The Case for Metabolic Acidosis as the Cause of Death in Arrest-related Deaths

Victor W. Weedn, MD, JD

This presentation is adapted from a presentation given at the NAME 58th Annual Meeting, Sept 21, 2024, Denver, CO. representing the work of Victor Weedn, Alon Steinberg, and Pete Speth * Eric Jaeger also made valuable contributions

Take Home Points

Metabolic acidosis is the primary cause of in-custody death involving prone restraint

Metabolic acidosis arises due to a combination of stress, physical struggle, often stimulant drugs, and, in some cases, ECW application

Prone restraint interferes with the ability to compensate for metabolic acidosis by restricting the patient's ability to breathe

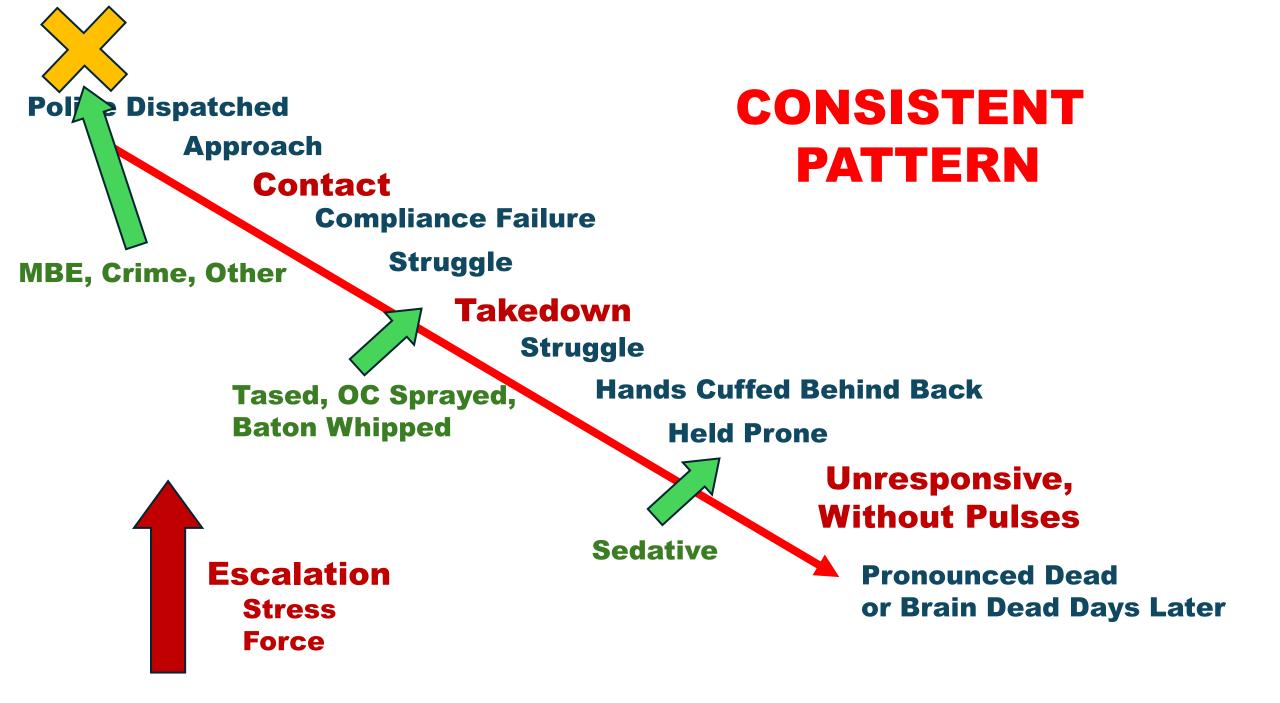
Important EMS data, can yield valuable clues to the cause of death but is often overlooked

> These deaths should be characterized as **homicides**

LETHAL RESTRAINT

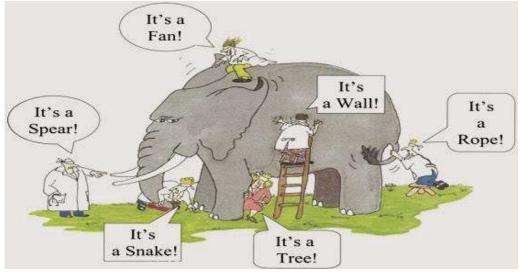
Why did > 1000 people die after police subdued them with force that wasn't meant to kill?

An avg. of 2 / week


AP

Only a tiny fraction of police encounters

SPAN FRONTLINE


- While **30%** involved people who were a *threat to others*
- 25% involved people who posed little or no risk to others

Proposed Mechanisms/Causes of Death

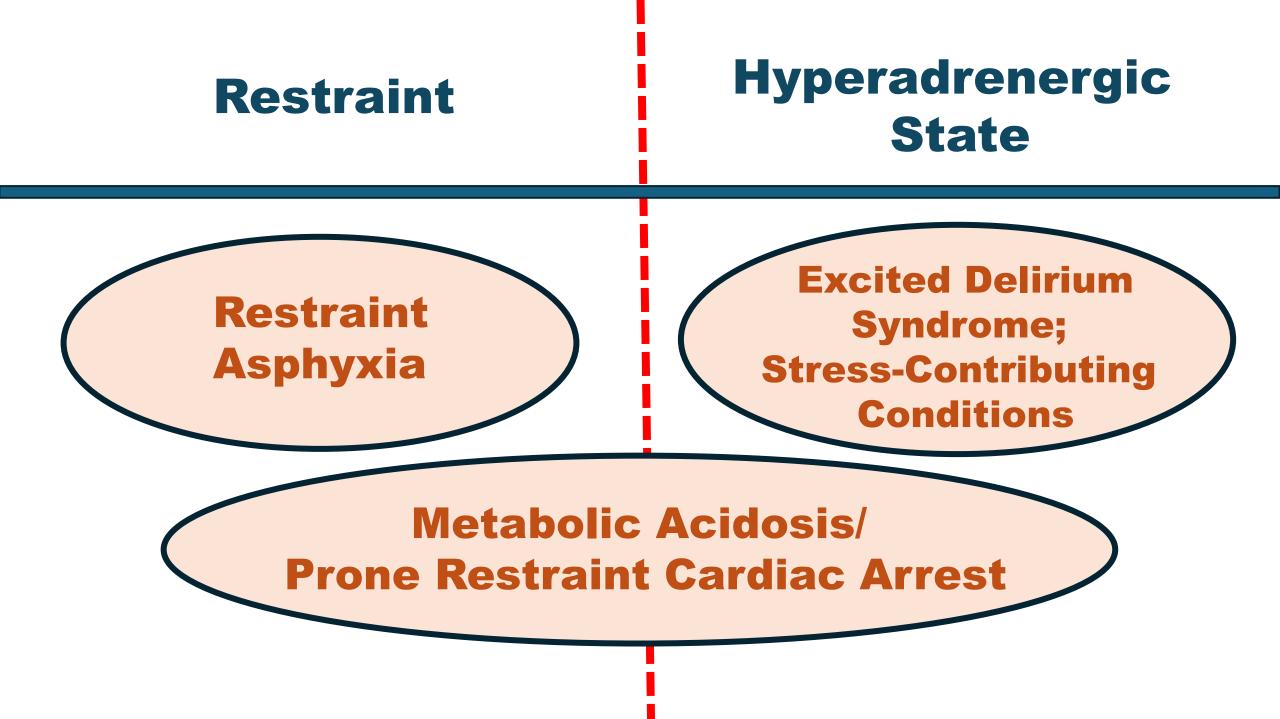
- Restraint (Positional, Mechanical) Asphyxia
- Excited Delirium Syndrome (Catecholamine Storm)
- [Excited Delirium Syndrome (Catecholamine Depletion)]
- [Excited Delirium Syndrome (Hyperthermia)]
- Stress-related Myocardial Infarction
- Stress-related Arrhythmia
- Stress-related Cardiomyopathy
- Stress + Channelopathy
- Stress + Underlying Cardiac Disease
- Stress + Drugs
- Neck Pressure / Carotid Sinus Stimulation
- Stimulant Drug Overdose
- Metabolic Acidosis/Prone Restraint Cardiac Arrest
- Sedative Medication Overdose

-- NEGATIVE AUTOPSY --

ASSOCIATION v. CAUSALITY

temporal relationship is suggestive Logical fallacy: post hoc ergo propter hoc

We see:


Cocaine psychosis \rightarrow death Excited delirium \rightarrow death Restraint \rightarrow death ASCVD + Subdual \rightarrow death Tox + Subdual \rightarrow death Sedative use \rightarrow

We certify:

COD: cocaine psychosis COD: excited delirium COD: restraint asphyxia COD: ASCVD + subdual COD: tox + subdual COD: sedative use

- Functional causes of death
- There is nothing to see at autopsy
- We are not concerned with mechanisms of death

RESTRAINT ASPHYXIA

What We Should See in Hypoxic Deaths

Clinically: Prodrome - Cyanosis/Ashen Discoloration Slowing Cognition PEA/Asystole & Possibly VT/VF

At Autopsy: No Pathognomonic Signs Possibly Petechiae

Evidence For

None

Evidence Against

Absence of reports of cyanosis before arrestNo cases of petechiaeNo neuropathology of anoxic changesSan Diego studiesProlonged restraint

Common Denominator of Fatal ExDS is Restraint

O'Halloran

1993

Restraint Asphyxiation in Excited Delirium

O'Halloran, Ronald L. M.D.; Lewman, Larry V. M.D.

Author Information⊗

The American Journal of Forensic Medicine and Pathology 14(4):p 289-295, December 1993.

2000

Asphyxial Death During Prone Restraint Revisited

A Report of 21 Cases

O'Halloran, Ronald L. M.D.; Frank, Janice G. M.D.

Author Information⊗

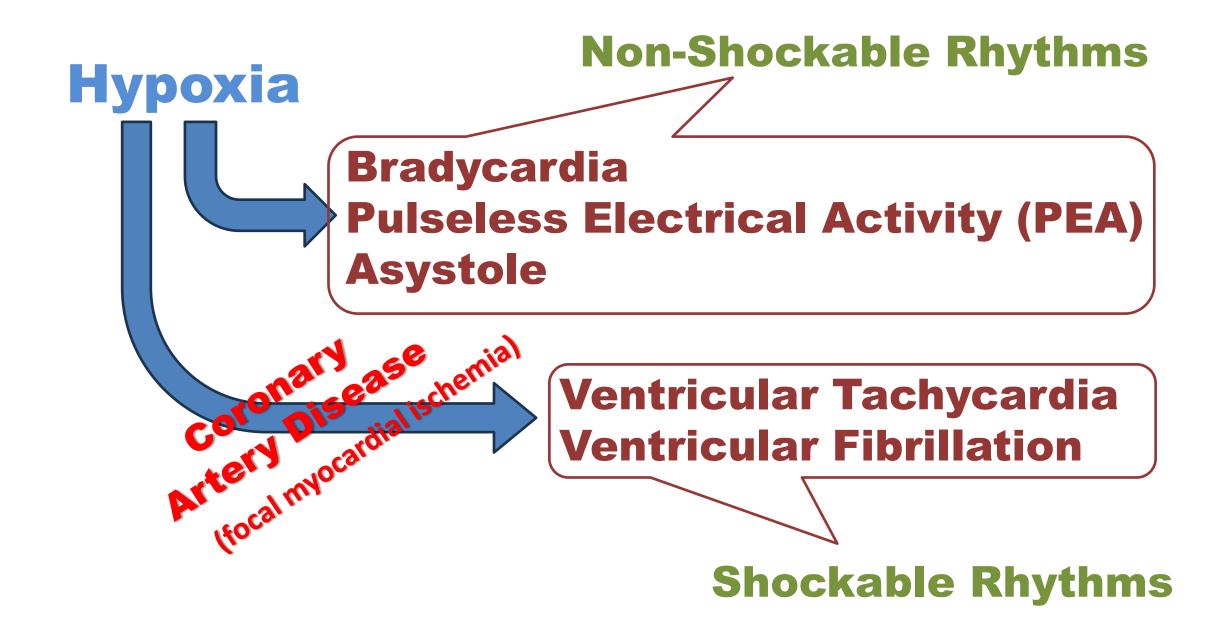
The American Journal of Forensic Medicine and Pathology 21(1):p 39-52, March 2000.

Strommer, Leith, Zeegers, Freeman

2020

The role of restraint in fatal excited delirium: a research synthesis and pooled analysis

Review | <u>Open access</u> | Published: 22 August 2020 Volume 16, pages 680–692, (2020) Cite this article


Studies of Prone Position & Prone Restraint

Study	No. of Subjects	BMI (kg/m ²)	Restraint conditions	Percent c	hange vs. <mark>s</mark> itti	ng
			200.2	FVC	FEVI	MVV
Chan et al., 1997 ²⁸	15	<30	PMRP	-13%	-14%	-21%
Vilke et al. 2000 ²⁹	20	<30	Prone position	8%	-10%	-16%
			PMRP	-16%	-15%	
Chan et al. 2004 ²⁴	10	21-35	PMRP+11 kg	-20%	-18%	
			PMRP+23 kg	-22%	-19%	
Michalewicz et al., 2007 ²⁵	30					-18%
			was			-12%
						-22%
		4				-30%
Sloane et al., 2014 ²⁶	10		ained			0
Roeggla et al., 1997 ²⁷	6			0%	-42%	
Cary et al., 200030	12	NK	Prone position	-12%	-12%	0
			Prone+75 kg	-31%	-35%	33%
Parkes, 2008 ³¹	14	27.1	Prone restraint	-25%	-28%	
Meredith et al., 2005 ³²	8	NR	Prone and PMRP	NS ^a	NSa	
Barnett et al., 2013 ³³	25	24.8	Prone position	-16%	-16%	
			Supported prone	-11%	-10%	

^aNot statistically significant in 5/8 enrolled subjects who completed protocol.

FVC: forced vital capacity; FEV1: forced expiratory volume in one second; MVV: maximum voluntary ventilation; PMRP: prone maximal restraint position; NR: not reported; NS: not significant.

Steinberg A. Prone Restraint Cardiac Arrest: A Comprehensive Review of the Scientific Literature and an Explanation of the Physiology. Med Sci Law 2021; 61(3):215-226

HYPERADRENERGIC STATES (ExDS, Stress-related Conditions)

Two Reasons for Skepticism of Catecholamine as Cause of Death

1. Epinephrine is widely used in the ED for cardiac arrest

2. Pheochromocytoma crisis presents as **† BP & headaches**

What We Should See in **ExDS**

Clinically: Tachycardia, Tachypnea Pupillary dilatation VT/VF

At Autopsy: Myocardial Contraction Bands Subendocardial Hemorrhage of the Left Ventricular Outflow tract Wavy fibers

Evidence For

None

Evidence Against

Routine epinephrine administration in ExDS Absence of case reports of deaths from excessive epinephrine Clinical picture is not consistent with pheochromocytoma crisis Not all deaths involve aggressive and delirious subjects Non-Shockable Rhythms

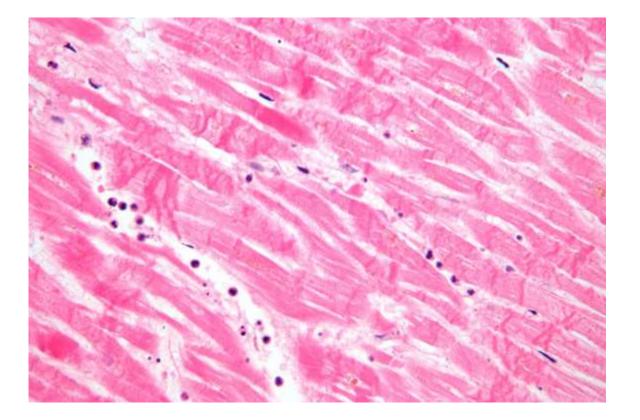
Table 1: ExDS Prehospital Potential Features and Frequencies with 95% Confidence Intervals

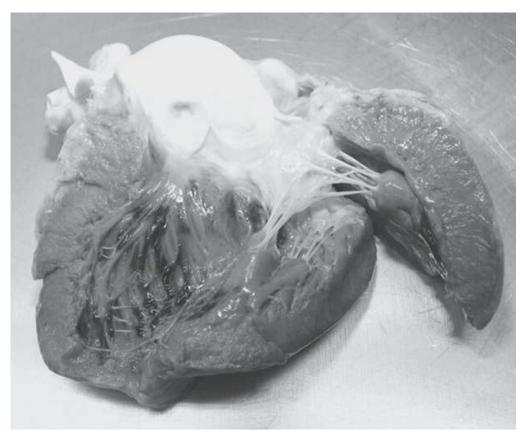
FEATURE	FREQUENCY <u>% (95% CI)</u>
Pain Tolerance	100 (83-100)
Tachypnea	100 (83-100)
Sweating	95 (75-100)
Agitation	95 (75-100)
Tactile Hyperthermia	95 (75-100)
Police Noncompliance	90 (68-99)
Lack of Tiring	90 (68-90)
Unusual Strength	90 (68-90
Inappropriately Clothed	70 (45-88)
Mirror/Glass Attraction	10

2009

American Colle Emergency Phy	·
ADVANCING EMERGENCY CARE_	$-\Lambda$

White Paper Report on Excited Delirium Syndrome


ACEP Excited Delirium Task Force


But Note: In **2023**, the ACEP withdrew this white paper and now use: **Hyperactive Delirium with Severe Agitation**

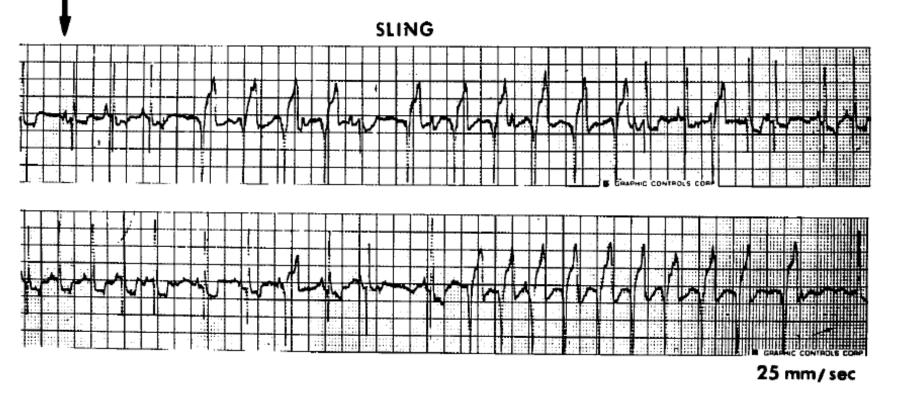
Elevated Epinephrine

Myocardial Contraction Bands

Subendocardial Hemorrhage in the Left Ventricular Outflow Tract

Hyperadrenergic State

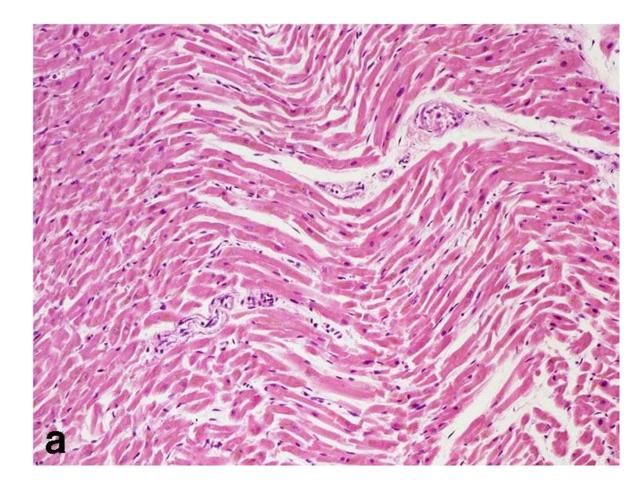
ExDS, Stress-related myocardial infarction Stress-related cardiomyopathy Stress-related channelopathy Stress + drugs, Stress + underlying cardiac pathology


Ventricular Tachycardia Ventricular Fibrillation

Shockable Rhythms

**************************************		_	_	_	-		_	-	_	_	_	_	_		_	-	_	_	-													_														
	ы н ы	11:1:		11:12	1111			113	- 11 I I			11 I.L	11 I.I		10.00	1	100	1.1	1.1	- 11	120	12.5	20.2.5	****	1				1	1 4 5 5							त्तात	11111		THEFT	11111		÷			
****													24 F.		1	-				2 M I.		1111		11111	11221	11224			11111	: DE	1			11111		11111	11111	11016							****	
					1.1.1	-			10.00					-	11.7.2			1.1			1 A A	1.10	$h \equiv a \cdot b$	1111		6.5.6			2 2 2 1	1143	5 I I I			1111			11111	11818		Inte						
	12111			10++44							- 1-1																											*****								
				:1111	112.22		- H 🖬 🗄	Market in			- 13			. II. S.				- 14 A S	I:1.		1.1.1			1111	2 B B B B	12122	1.111		5 M S	- Hills	6 H.		6 H H	ши		19119	11111	11111		nun				*****		ARE -
**************************************	11111	882 - L		11146									46 B B B B B B B B B B B B B B B B B B B			- I.	. Le 1			I	- T			11.2	1111		11:11		1111	1111			*****	11111			111111	11111	11 E I	1011				штн		##
************				11111	8	1.1	- 1								1 2 2 1				211			1111		1.1.1.1						11.1							****					11111				
		1111	. D. B.	120	1 1 1 1 1	1. I				11	- 1-1			1.1	1 2 3						1.1	2.11		11111	1111	H				1124	1110			11121			21812	***		11111						-
				111111		14 L	- 1 1 1 1			11	11				. 121	1.1	- L - 1			1128	122	1416	1111	41.23	1.12		11:1:1		5 8 65 8	11:23	e li B		100	19111			1111	HH 11	HI.8	41143		11111		****		
															- 10-	-	1							****				-											1.1		+++++		****			
*****	*****		19 H H		1111	1.114		1.1	11.1		- 14			- 11 I I I I	- P	S 1 - S - S	- 116-	: 1 - i		2 C S R	- 68			11112	12.03				3 23 3	: I : : : :			1111	22.11			6 H H	+++++++	11 H H							
A			14 B B				2.2	111	20 J 21	1. D.	a 3		11111		1 551	1 23	5 I S I	11 23			- 111		1111	1.11	1111	1936		1.0	1	6 C C	- 11		- 11	FI 11				11111	HI I	11111		111112				68 C
				-	- 1							-	- 14		-				_														11	11 11	8 U I	11111	712 24	1644	21 B I		шан					
Sadda and State (1987)			- 141	10.77				_		-		: L.			.		- T.	- P	18-				- 1 A				00	- A										- m								
715 1L 11 11 11 11 11 11 11	11 T T T	1210		1.11															17					11111		11.20			10 M I	1	16.1		51 P		i i mili	ън				1.000						-
		-			_	_				÷	- 5	· · ·				_			<u> </u>		· •			1.1.1	1.0.0	111	4.44			1.11							1.11	11111	191.				11 11 1		***	
		1.1	1 I I I I I I I I I I I I I I I I I I I			1.25		12.016	110	· I	Ŧ					· .	1.1	•••				1.1.1	1.1.1.1	11.7.8						11.1	112						73 H									
			- 140				20 J.	- 114	10 B I I I	-	11 I I I				1.1	: P	di ka s	. 11		- 1	- 1	112	1.121	1111	1.11.	1.12	1.1.1.1	1	5 e i i		1161		111	11 11			1111	11111	111				III I	*****		
							- N - N - N - N - N - N - N - N - N - N		11.1	-	- +	11.1							**				1.11	11.11		1.666				-	1.2		111::	11 11				11111					****	****		
1	*****		- A-		<u> </u>	4	1.1		1 * * 5											_										1 1 2 1								11111								
1		- -	1. J. L.	1.1		3 - C C	I		5 L -		1.2	51 I S S	53 F.	u 193	illte -	3 I	비난감	12 22						11 I I	ba e b				10.0		112	1111	231 22	12122			1:1:1	11111		ни		****				HH
		1.1	- L	1.11			-				- I C	22 B C C	10.0	- J 2	100	- F - F	- 1		2 C I I I	· •	100		P 10	111.22		12222	11111	1:12	1122	1111	1111	1112	81.5	11			1111	H 11	1111		HH H 1	111111	4114		1111	1111
				_			_				_	_						-		_						-						14121	1011					11 11	11.11		1911	10000	11111	****		448

VT/VF


FIGURE 7. Psychologic stress provokes ventricular tachycardia in an animal with previous coronary occlusion. While the animal is in a tranquil cage environment, there is sinus arrhythmia without ventricular ectopic activity. By contrast, when it is in the stressful sling environment there is frequent and sustained ventricular tachycardia.

Lown B, Verrier RL, Rabinowitz SH. Neural and psychologic mechanisms and the problem of sudden cardiac death. Am J Cardiol 1977;39(6):890-902.

Ventricular Fibrillation

Myocardial Wavy Fibers

No Agitation Prior to Police Encounter in a Significant Number of Cases

In a significant percentage of deaths, the subject was not agitated or was exhibiting only minor agitation prior to being restrained by police

- 25% in the AP News database exhibited at most minor agitation
- Well-publicized examples:
 - Eric Garner
 - George Floyd
 - Elijah McClain

PRONE RESTRAINT CARDIAC ARREST / METABOLIC ACIDOSIS

What We Should See in PRCA

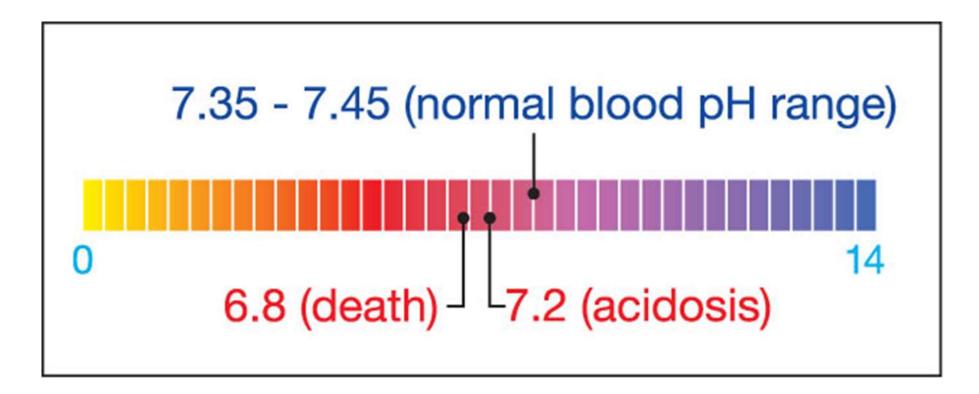
Clinically: Tachypnea, Tachycardia "I can't breathe" PEA/Asystole

At Autopsy: No Pathognomonic Signs

Possible Myocardial Contraction Bands Possible Subendocardial Hemorrhage in

Evidence For

the Left Ventricular Outflow tract


AED advises non-shockable rhythm PEA/Asystole Low End-Tidal CO2 Low pH, Elevated Lactate, High pCO2

Evidence Against

None

Consistent findings

METABOLIC ACIDOSIS occurs when metabolic demand exceeds the anaerobic threshold and hydrogen ions and lactic acid are released.

The major buffer system of blood is the carbon dioxide-bicarbonate balance

$$pH = 6.1 + \log_{10} \left(\frac{[HCO_3]}{0.03 \times pCO_2} \right)$$

- Carbon dioxide functions as an acid
- Bicarbonate functions as a base

METABOLIC DEMAND

Physical Exertion (struggle)

Stress (Fear/Anxiety/Pain)

Stimulant Drugs (Cocaine, Meth, PCP)

... also ECDs

PHYSIOLOGIC RESPONSE to short periods of maximal exercise Tachcardia

 \rightarrow increase cardiac output ~4-6x

Tachypnea "blowing off CO2"

 \rightarrow increase ventilation ~20x

(5-6 L/min to 150 L/min)

- increase respiratory rates 2-3x
 (16-20 breaths/min to 40-50 breaths/min)
- increase in depth of breath 4-6x
 (0.5 L/breath to 3 L/breath)

Police restraint prevents respiratory compensation

Studies of Prone Position & Prone Restraint

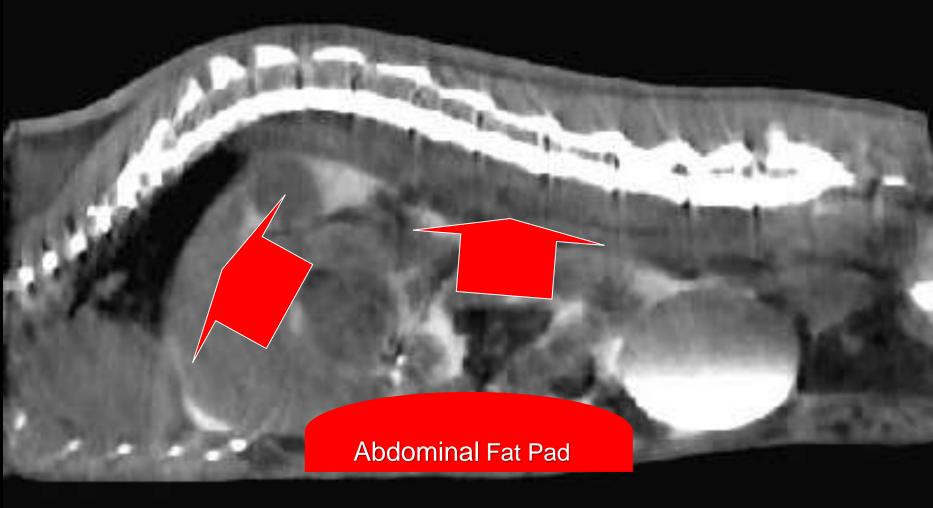
Study	No. of Subjects	BMI (kg/m ²)	Restraint conditions	Percent change vs. sitting						
-				FVC	FEVI	MVV				
Chan et al., 1997 ²⁸	15	<30	PMRP	-13%	-14%	-21%				
Vilke et al. 2000 ²⁹	20	<30	Prone position PMRP	8% 16%	-10% -15%	-169				
Chan et al. 2004 ²⁴	10	21-35	PMRP+11 kg PMRP+23 kg	-20% -22%	-18%					
Michalewicz et al., 2007 ²⁵	30	24.5	PMRP PMRP+23-34 kg PMRP+57-68 kg PMRP+91-102 kg		-17/0	-18% -12% -22% -30%				
Sloane et al., 2014 ²⁶	10	35.4	PMRP	\frown		0				
Roeggla et al., 1997 ²⁷	6	22.8	PMRP	-40%	-42%					
Cary et al., 2000 ³⁰	12	NR	Prone position Prone+75 kg	-12% -31%	-12% -35%	0 33%				
Parkes, 2008 ³¹	14	27.1	Prone restraint	-25%	-28%					
Meredith et al., 2005 ³²	8	NR	Prone and PMRP	NS ^a	NSa					
Barnett et al., 2013 ³³	25	24.8	Prone position Supported prone	-16% -11%	-16% -10%					

^aNot statistically significant in 5/8 enrolled subjects who completed protocol.

UCSD

Europear

Research


FVC: forced vital capacity; FEV1: forced expiratory volume in one second; MVV: maximum voluntary ventilation; PMRP: prone maximal restraint position; NR: not reported; NS: not significant.

Steinberg A. Prone Restraint Cardiac Arrest: A Comprehensive Review of the Scientific Literature and an Explanation of the Physiology. Med Sci Law 2021; 61(3):215-226

8-22%

11-40%

Obesity is a risk factor

Pressure on the Diaphragm & IVC

Metabolic Acidosis in Restraint-associated Cardiac Arrest: A Case Series

JOHN L. HICK, MD, STEPHEN W. SMITH, MD, MICHAEL T. LYNCH, MD

"These cases suggest that a profound metabolic acidosis is associated with cardiovascular collapse following exertion in a restrained position."

5 cases with cardiac arrest **pH avg <6.62 (6.25-6.81)** -all died, except one with pH of 6.46*

*The lactate level in the survivor was 24 meq/L, which is much greater than that produced by athletes 5 cases without cardiac arrest pH avg 7.01 (6.76-7.16)

Dybvik, et al. 257 hospital cardiac arrest deaths pH avg 7.25 (7.20-7.26)

Hick JL, Smith SW, Lynch MT. Metabolic acidosis in restraint-associated cardiac arrest. A case series. Acad Emerg Med. 1999;6:239–43.

Prehospital resuscitation of a man with excited delirium and cardiopulmonary arrest

Patrick Joseph Maher, MD*; Mimi Walsh, PhD[†]; Thomas Burns, BA[†]; Jared Strote, MD, MS*

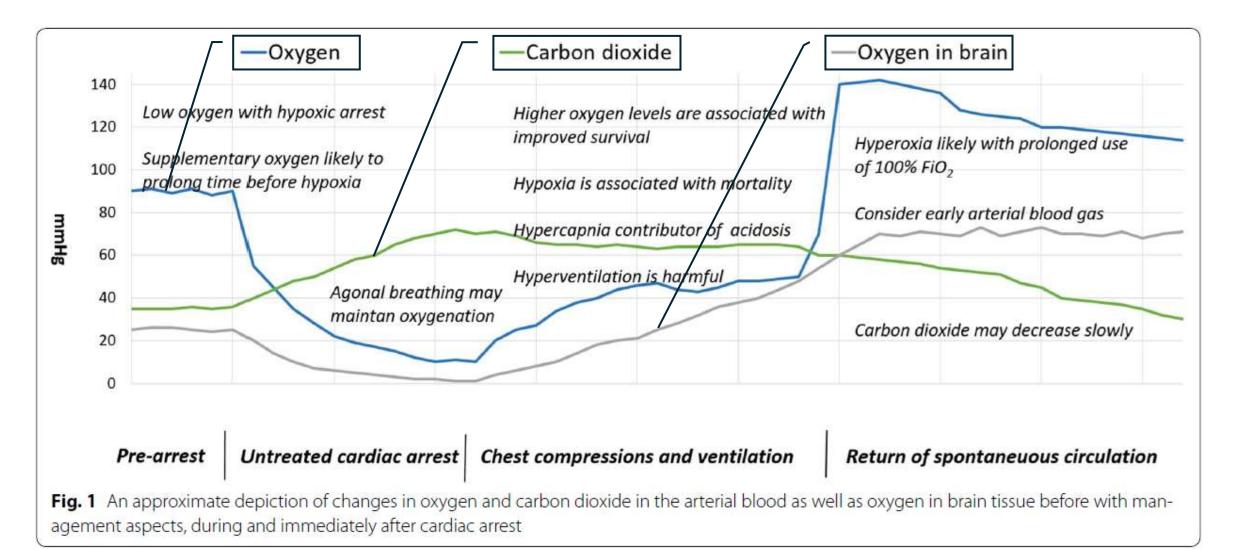
ABG pH <6.8 pCO2 - 70 mm Hg (nl 35-45) Lactate >30 mmol/L Troponin - negative

Maher PJ, Walsh M, Burns T, Strote J. Prehospital resuscitation of a man with excited delirium and cardiopulmonary arrest. CJEM. 2014 Jan;16(1):80-3.

DOI: 10.1111/1556-4029.15101

ORIGINAL PAPER

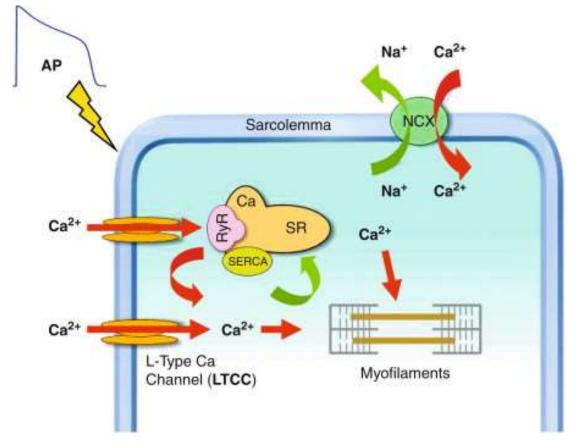
FORENSIC SCIENCES

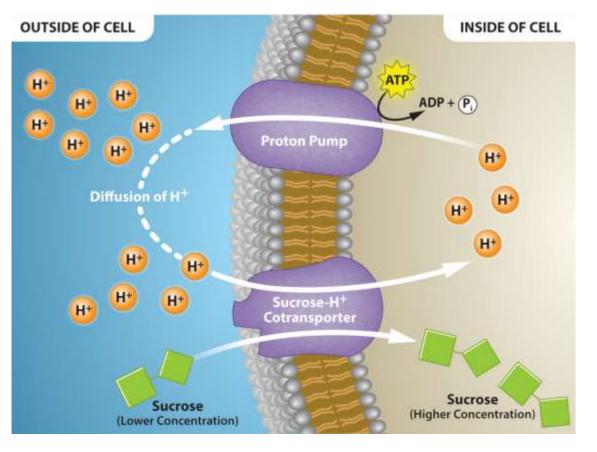

Pathology/Biology

Prone restraint cardiac arrest in in-custody and arrest-related deaths

Victor Weedn MD, JD^{1,2,3} | Alon Steinberg MD⁴ | Pete Speth MD⁵

Case 1. ABG: pH 7.01 pCO2 70.6 mm Hg (nl 35-45) 95 min post-arrest Case 2. VBG: pH 6.64 pCO2 157 mm Hg (nl 41-51) 16 min post-arrest


Oxygen and carbon dioxide targets during and after resuscitation of cardiac arrest patients



Skrifvars MB, Olasveengen TM, Ristagno G. Oxygen and carbon dioxide targets during and after resuscitation of cardiac arrest patients. Intensive Care Med. 2019 Feb;45(2):284-286.

Metabolic acidosis can develop rapidly At some point, the heart just stops beating

The flow of ions is sensitive to pH

Acidosis and Catecholamine Evaluation Following Simulated Law Enforcement "Use of Force" Encounters

Jeffrey D. Ho, MD, Donald M. Dawes, MD, Rebecca S. Nelson, Erik J. Lundin, MS, Frank J. Ryan, PhD, Kenneth G. Overton, Adam J. Zeiders, EMT-P, and James R. Miner, MD

within 1 minute

Simulating physical exertion of resisting arrest:

45 sec of hitting and punching a heavy bag

- pH: $7.36 \rightarrow 7.04 \rightarrow 10 \text{ min later } 7.06$
- **Lactate:** $1.44 \rightarrow 15.46 \rightarrow 10$ min later 17.33

Simulating fleeing on foot:

150 m sprint & 44" hurdle

pH: $7.32 \rightarrow 7.16 \rightarrow 10 \text{ min later } 7.22$

Lactate: $1.19 \rightarrow 10.98 \rightarrow 10$ min later 11.47

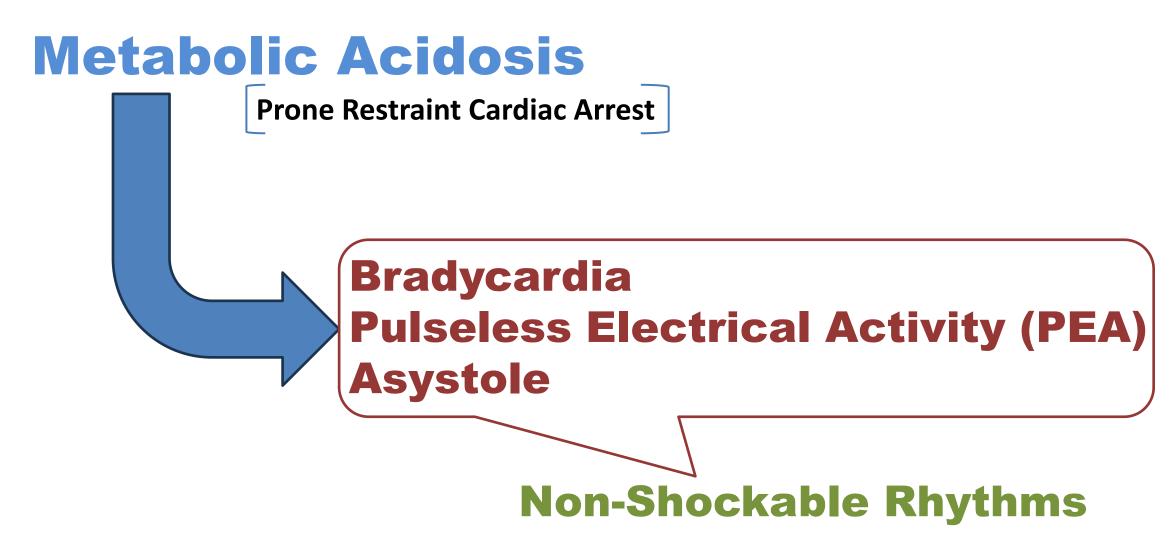
Ho JD, Dawes DM, Nelson RS, Nelson RS, Lundin EJ, Ryan FJ, et al. Acidosis and catecholamine evaluation following simulated law enforcement "use of force" encounters. Acad Emerg Med. 2010;17:e60–8.

... same article

Acidosis and Catecholamine Evaluation Following Simulated Law Enforcement "Use of Force" Encounters

The acidosis will continue to build for a few minutes

Jeffrey D. Ho, MD, Donald M. Dawes, MD, Rebecca S. Nelson, Erik J. Lundin, MS, Frank J. Ryan, PhD, Kenneth G. Overton, Adam J. Zeiders, EMT-P, and James R. Miner, MD


Gass et al.⁵ found that **lactate peaked at the sixth minute** of inactive recovery in subjects completing a maximum exercise regimen on a motor-driven treadmill. The mean peak lactate was 14.2 mmol/L.

Allsop et al.⁶ found that venous pH decreased from 7.39 to 7.04 after a 30-second maximal sprint. The pH was 7.29 at 30 minutes. **Lactate peaked** at 15.76 mmol/L **5 minutes after** the completion of the sprint, declining to 10.30 mmol/L at 30 minutes.⁶

Ho JD, Dawes DM, Nelson RS, Nelson RS, Lundin EJ, Ryan FJ, et al. Acidosis and catecholamine evaluation following simulated law enforcement "use of force" encounters. Acad Emerg Med. 2010;17:e60–8.

"I can't breathe!!!"

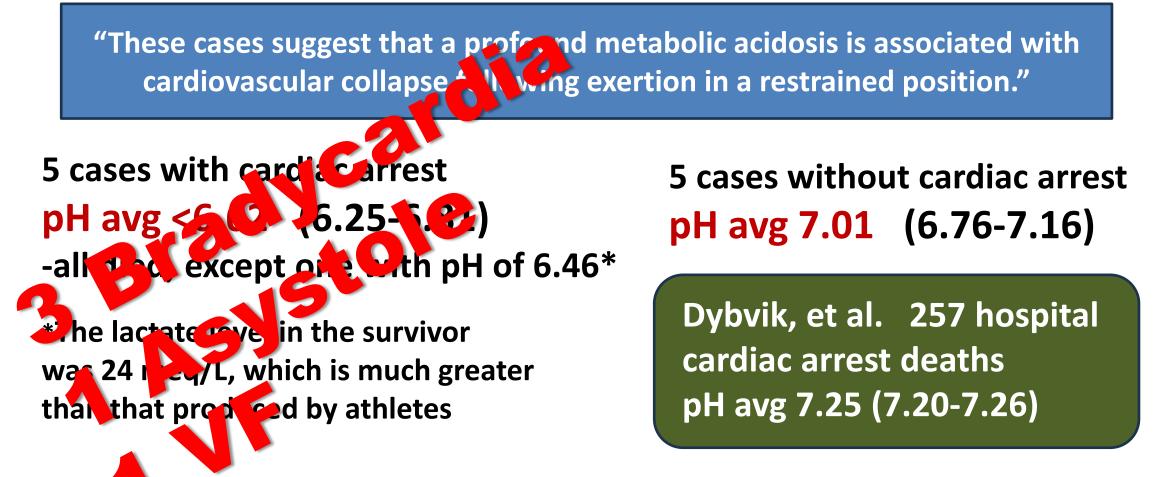
CONSISTENT WITH METABOLIC ACIDOSIS

Causes of Non-Shockable Rhythms

Pulseless Electrical Activity

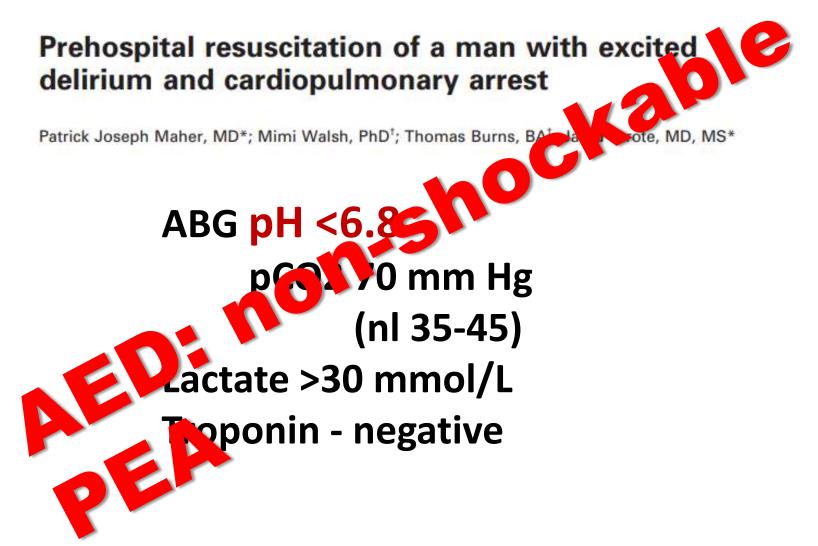
5 Hs

- 1. Hypovolemia
- 2. Hypoxia
- 3. Hydrogen ion (acidosis)
- 4. Hypo/hyperkalemia
- 5. Hypothermia


5 Ts

- 1. Tension pneumothorax
- 2. Trauma
- 3. Tamponade
- 4. Thrombosis, pulmonary
- 5. Thrombosis, coronary
 - Global ischemia
 - Ruptured papillary muscle
 - Cardiac tamponade

Metabolic Acidosis in Restraint-associated Cardiac Arrest: A Case Series



JOHN L. HICK, MD, STEPHEN W. SMITH, MD, MICHAEL T. LYNCH, MD

Hick JL, Smith SW, Lynch MT. Metabolic acidosis in restraint-associated cardiac arrest. A case series. Acad Emerg Med. 1999;6:239–43.

Maher PJ, Walsh M, Burns T, Strote J. Prehospital resuscitation of a man with excited delirium and cardiopulmonary arrest. CJEM. 2014 Jan;16(1):80-3.

DOI: 10.1111/1556-4029.15101


ORIGINAL PAPER

FORENSIC SCIENCES

Pathology/Biology

Prone restraint cardiac arrest in in-custody and arrest-related deaths

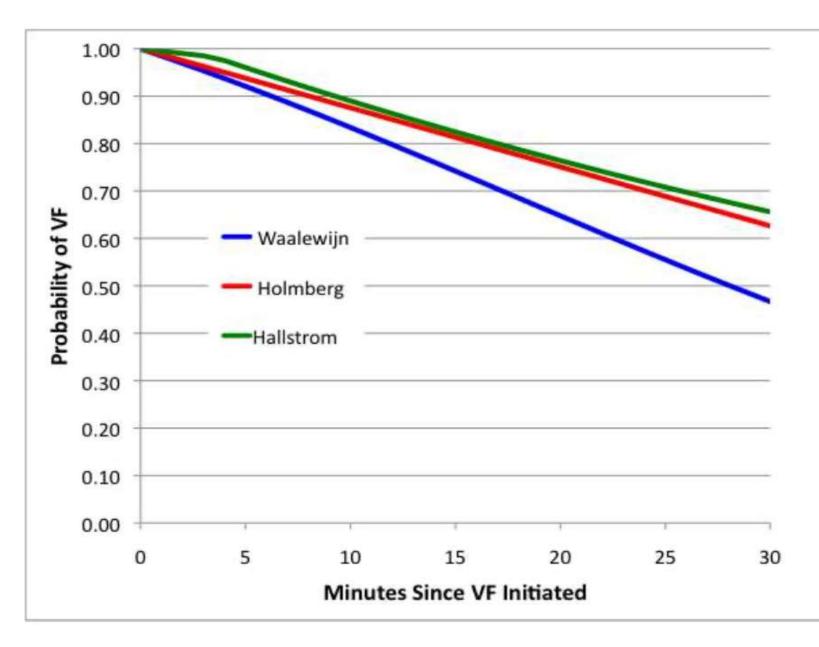
Factors Associated With Sudden Death of Individuals Requiring Restraint for Excited Delirium

SAMUEL J. STRATTON, MD, MPH,*[†] CHRISTOPHER ROGERS, MD,[‡] KAREN BRICKETT, RN, MSN,[§] AND GINGER GRUZINSKI, RN, BSN [†]

TABLE 2. Physical Findings on Initial EMS Contact in the Field

Patient	Resp Rate (min)	Response	Cardiac Rhythm	Heart Rate (min)	Choke/Taser/ Pepper	
1	Agonal	Obtunded	VT	NA		7
2	0	Unconscious	ASY	0		
3	Agonal	Obtunded	ASY	0	laser	
4	24	Agitated	ST	136		
5	Agonal	Agitated	AGO	53-00		
6	Agonal	Obtunded	ASY	0		
7	Agonal	Obtunded	ASY	0		
8	0	Unconscious	2020 Sec. 10 S		Taser/pepper	
8	0	Unconscious			Pepper	
10	Agonal	Obtunded	JUNCT	50-60	Taser	
11	0	Unconscious			Taser/pepper	
12	0	Unconscious				
13*	3-5	Agitated	JUNCT	40	Taser	
14	Agonal	Obtunded				
15	Agonal	Obtunded	ASY	0		
16	Agonal	Obtunded	ASY	0	Pepper	
17	Agonal	Obtunded	BRADY	50	Pepper	
18	22	Agitated	ST	140	Pepper	

2001


Only 1/18 ExDS/ARD cases, EMS Witnessed Cardiac Arrests, had VT/VF

Abbreviations: VT, ventricular tachycardia; ASY, asystole; AGO, slow, wide complex (agonal); JUNCT, junctional; ST, sinus tachycardia. NOTE. Agonal respiratory rate indicates slow, shallow breathing pattern. Obtunded indicates conscious but moaning response only. Pepper indicates use of capsicum spray.

* Female.

Stratton SJ, Rogers C, Brickett K, Gruzinski G. Factors associated with sudden death of individuals requiring restraint for excited delirium. Am J Emerg Med. 2001 May;19(3):187-91.

Probability of still finding VF after an arrest

Evidence for PRCA

- Tachypneic
- "I can't breathe!"
- AED: advises no shock
- ECG: PEA or asystole
- End tidal CO2: low
- pH: low
- Lactate: high
- pO2: normal
- pCO2: high

WHY IS THIS IMPORTANT?

These deaths are due to the Volitional actions of police restraining subjects in the prone position

Homicide

These deaths should be certified as HOMICIDES

Table 2. Cause-of-death statement categorizations by manner of death (N = 940 Deaths) Based upon the AP Lethal Restraint database.

Underlying Cause of Death		\frown				Manner o	of Deat	h				
28.5%	Homicide (28.5%) ¹		Accidental (46.9%) ¹		Undetermined (19.5%) ¹		Natural (5.0%) ¹		Suicide (0.1%) ¹		Any Manner (100.0%) ¹	
lomicide												
	N	%	Ν	%	N	%	N	%	N	%	Ν	%
Any Cause of Death	268	100.0	441	100.0	183	100.0	47	100.0	1	100.0	940	100.0
Cause-of-Death Statement												
Force-related injury/condition mentioned	82	30.6		AP: '	"si	ignifi	can	t pol	ice	force	e we	ent
						_	_	_				
Any mention of force	200	74.6								or pre Imed		—
Any mention of force No mention of force or force-related injury/condition	200 68	74.6 25.4								or pre Imed		—
No mention of force or force-related										•		—

¹ Percentages in parentheses refer to total deaths by manner. Other percentages refer to deaths in particular manner-cause combination strata.

Forensic Pathologists Need to pay attention to EMS data

AD HOC DEATHS IN CUSTODY COMMITTEE POSITION PAPER

National Association of Medical Examiners Position Paper: Recommendations for the Definition, Investigation, Postmortem Examination, and Reporting of Deaths in Custody.

Roger A. Mitchell Jr. MD, Francisco Diaz, MD, Gary A. Goldfogel MD, Mark Fajardo MD, Stephany E. Fiore MD, Tanisha V. Henson MFS, Michelle A. Jorden MD, Sean Kelly MD, Scott Luzi MD, Megan Quinn MD, Dwayne A. Wolf MD PhD

ABSTRACT: The National Association of Medical Examiners commissioned an ad hoc committee to provide recommendations for the investigation, examination, and reporting of deaths in custody. Deaths in custody, whether occuring in jail/prison or during an altercation with law enforcement, is a complex issue and requires the forensic pathologist to be knowledgable and deliberative about his/her diagnosis. This paper provides recommendations for the forensic pathologist as it relates to: 1) categorization of deaths in custody, 2) critical information required during investigation, 3) enhanced autopsy procedures, 4) guidance on death certification, 5) parameters for statistical reporting, and 6) release of information to the public. A uniform approach by medical examiners and coroners to the investigation and evaluation of deaths in custody is critical. The establishment of recommendations has the

In addition to bodycam video

Need: EMS data AED advice initial EKG rhythm EtCO2

In Summary

- Metabolic acidosis is the primary cause of in-custody death
 - Metabolic acidosis arises due to a combination of struggles, in some cases, stimulant drugs and/or ECWs
 - Prone restraint interferes with the ability to compensate for metabolic acidosis by restricting the patient's ability to breath
- These are challenging cases; all data must be scrutinized
 - EMS patient care reports and vital signs
 - Body camera or other video evidence
- Homicides
 - These deaths are due to the volitional actions of the police restraining subjects in the prone position and should be characterized as **homicides**

Victor W. Weedn, MD, JD

<u>vweedn@gwu.edu</u> (412) 600-4211

