Nuclear Power in the Maritime Decarbonization

Domenic Carlucci | ABS VP, Government Services

Impact of MEPC 80

Well-to-wake focus on MEPC 80 is driving increased interest in adopting nuclear solutions

2 | Nuclear Power in the Maritime Decarbonization

Decarbonization Solutions

Alternative Fuels
 Technology Improvements
 Operational Efficiency

70%

3 | Nuclear Power in the Maritime Decarbonization

Nuclear — Maritime Use Cases

Near Shore Nuclear Power

- Floating power barge for grid electricity
- Suitable for arrays of microreactors or small modular reactors
- Supporting Port Electrification
- Offshore Facilities

Nuclear Generated Fuels

- Included in MEPC 80's mid-and long-term reduction targets
- Strong opportunity for competitive fuels
- Not widely developed

Nuclear-Electric Propulsion

- Reactors fitted for high power
- Zero-carbon switch
- Reduce or eliminate bunkering

History of Nuclear in Maritime

United States

- 1940: Research on marine nuclear propulsion
- 1953: 1st naval test reactor, Mark 1
- 1955: 1st nuclear submarine, USS Nautilus
- 1962: U.S. Navy 26 nuclear submarines, 30 under construction
- 1959: 1st nuclear-powered merchant vessel, N.S. Savannah
- USSR/Russia
 - 1955: 1st Soviet nuclear submarine, K-3 Leninsky Komsomol
 - 1957: 1st nuclear icebreaker, Lenin
 - Current: Ice Breaker fleet

NS (Nuclear Ship) Savannah, enroute to the World's Fair in Seattle, 1962 Credit: US Government -NARA

Current Military Use of Nuclear Power	
US Navy	 Submarines (Attack, Ballistic/ Guided Missile) Aircraft Carriers
Russian Navy	 Submarines (Attack, Ballistic/ Cruise Missile) Battlecruiser
China	 Submarines (Attack, Ballistic)
British Navy	 Submarines (Attack, Ballistic)
France	 Submarines (Attack, Ballistic) Aircraft Carrier
Indian Navy	Submarine

Commercial Nuclear Challenges

Safety

- Zero GHG emissions.
- Replacement rather than refueling.
- Long fuel cycles.

Regulatory

- International (IAEA,IMO).
- Flag State.
- Coastal State.

Operational

- Nuclear maintenance at shipyards.
- Terminal considerations.
- Crew training requirements.
- End of life considerations.

Commercial/Social

- Capex requirements for construction.
- Trade location limitations.
- Public perception and acceptance.
- Public/private partnerships.

Thank You

www.eagle.org

Domenic Carlucci ABS, VP Government Services

dcarlucci@eagle.org

