National Aeronautics and Space Administration

NASA Aeronautics Engaging with Academia: the University Innovation Project

Koushik Datta University Innovation Project Manager **NASA** Aeronautics June 12, 2024

www.nasa.gov

University Innovation (UI) Project

Students propose own concepts and need to crowdfund

University Leadership Initiative (ULI)

Faculty led teams provide high impact aviation outcomes

University Innovation (UI) Project

Gateways to Blue Skies Competition

GATEWAYS TO BLUESKIES Inspire. Innovate. Impact. 2024 Theme: Advancing Aviation for Natural Disasters https://blueskies.nianet.org

Student teams work on a future aviation concept paper

Future Aviation Maintenance

Propose in collaboration with Aviation Maintenance Schools

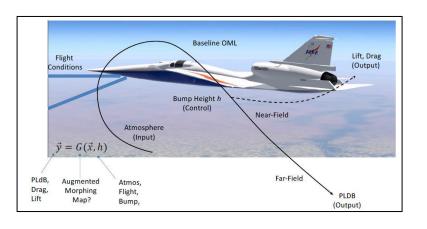
ULI Engaging the University Community

- 30 awards in 7 rounds
- 88 universities (39 non-R1 Universities; 32 Minority Serving Institutions)
- More than 500 students

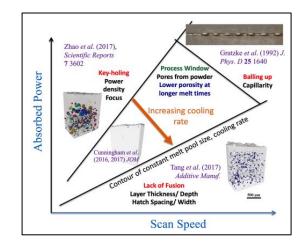
ULI Targets Faculty Proposals

- Solve major, system-level technical challenges in aeronautics
- Annual solicitation, typically opens in March
- Two-step proposal submission and evaluation process
- Receive up to \$2M / year for 3-4 years
- 3 ULI awards / year
- Opportunities for graduate, undergraduate and community college students to participate in aeronautics research
- Promote diversity in aeronautics with inclusion of underrepresented universities and faculties

ULI Portfolio Spans All NASA Aero Strategic Thrusts


Air Traffic Operations (Thrust 1)	High-Speed (Thrust 2)		sports, including Aviation (Thrust 3)	Vertical Lift (Thrust 4)	Materials & Structures (Thrust 4)	Aviation Manufacturing (Thrust 3, 4)	System-wide Safety (Thrust 5)	Autonomy (Thrust 6)	Hypersonic
University of South Carolina: Increase communication capabilities in the National Airspace System	Texas A&M University: Reduce supersonic noise for various atmospheric conditions (Extended for potential flight experiments)	Ohio State University: Develop electrical propulsion technologies for a 1-Megawatt aircraft	University of Illinois: Develop cryogenic & hydrogen technologies for a hydrogen aircraft (Extended for additional development)	University of California, San Diego: Design tools to rapidly develop electric vertical takeoff and landing vehicles	University of Delaware: Part/process design methodology for TuFF composites for high- rate manufacturing	Carnegie Mellon University: Improve Additive Manufacturing (AM) certification process and build an AM ecosystem	Arizona State University: Improve risk prediction NAS-wic with information fusion and prognostics	Stanford University: Develop techniques to enable trusted Al-based aviation systems	Purdue University: Optical and laser sensors for hypersonic flight control
University of Texas, Austin: Theory and concept of autonomous cargo operation	Georgia Tech: Co-optimally develop lower emission engine technologies and aviation systems for supersonic transport	University of Tennessee: Improve aerodynamic efficiency of slotted natural Iaminar flow aircraft	Florida State University: Hydrogen powered hybrid electric power system that uses turboelectric generators and fuel cells	Georgia Tech: Advanced materials, tools and processes for Urban Air Mobility (UAM) vehicles	University of South Carolina: Unidirectional tape-based thermoplastic part design and manufacture	University of Wisconsin: Improve safety and efficiency of manufacturing with human- robot teaming	Oklahoma State University: Prediction of low-level winds in both natural and urban environments	North Carolina A&T University: Integrate secure, coordination and control algorithms for certification of UAS/UAM	University of Texas, Austin: Vehicle as aero- dynamic sensor for hypersonic flight control (AFOSR funded)
New Mexico State University: Safe and efficient UAM operational strategies to meet flight demand from an electric grid perspective		Penn State University: Optimal design of a gas turbine engine for short-haul aircraft	University of Central Florida: Technologies for using ammonia for a hydrogen powered aircraft	Boston University: Safe, low-noise operation of UAM in urban canyons by integrating gust and trim optimization			University of Notr Dame: Enhance sUAS traffic managemen based on safety, readiness, operato preparedness, and maintenance	of Illinois: Autonomy tools to help UAM aircraft fly safely through dense r urban environments	
Univ of California, Berkeley: Stress testing and hardening the National Airspace System			Tennessee Tech. University: Propulsion and power for ammonia- based aircraft	Safe, Efficier Global Opera		afs, Quiet, and Affordable ertical Lift Air Vehicles	George Wash- ington University Securing high- density urban airspaces against cyberattacks	:	
Ohio University: Address challenges with automatic UAS surface operations				Innovation in High-Speed / Utra-Efficien Subsonic Tra	Commercial S Aircraft Aircraft	I-Time System-Wide afety Assurance ssured Autonomy for viation Transformation	Awards in	Closed or in process of closing	

Technical Impact of ULI Research (examples)


University of South Carolina led

- Filter bank multi-carrier for L and C band aviation networking that can be part of LDACS 3 standard. Would improve aviation datalink communication robustness and efficiency
- Deployed mmWave airport networks to increase communication capacity and security for wide range of applications
- What's Next: NSF and industry funded \$24M infrastructure project at NC State to support experiments related to sUAS detection, 5G, UTM, and AAM

Texas A&M University led

- Real-time LiDAR system to sense atmospheric conditions ahead
- "Morphing map" relates flight conditions (Mach number, Angle of attack) to conformal adaptive outer mold line shape
- What's Next: UI project funded a subset of team for 2 years to develop flight experiments in collaboration with NASA's Flight Demonstrations and Capabilities and Commercial Supersonic Technology projects

Carnegie Mellon University led

- Connection between Additive Manufacturing printing process parameters (laser power, scan speed, ...) and fatigue (a key mechanical property)
- Project data is curated and will be made publicly available to provide a large amount of process-microstructureproperties data for others to use and investigate.
- What's Next: A CMU-led NASA Space Technology Research Institute award (\$15M).

Enabling Non-CO₂ Technologies for 2050s and Beyond

Electric Propulsion	 Ohio State University (1 MW motor) Developed 9 kW/kg, 95.8% efficient integrated modular motor drive No partial discharge observed at 50,000 ft in NASA NEAT facility 	
Hydrogen	 University of Illinois, Urbana-Champaign (Cryogenic hydrogen electric aircraft) Superconducting motors and power transfer, Liquid hydrogen tanks Hydrogen fuel cell, Cryogenically-cooled power electronics 	 Florida State University (Hydrogen powered hybrid electric aircraft) Combination of turboelectric generators and fuel cells Develop power electronics, power distribution, and manage thermal loads
Ammonia	 University of Central Florida (Cracking ammonia for hydrogen propulsion) Ammonia as a hydrogen carrier, NOx control, and thermal management Supercritical carbon dioxide waste heat recovery system 	 Tennessee Technological University (Ammonia based power generation) Integrate an ammonia-based Solid Oxide Fuel Cell-Combustor and a turbogenerator Distributed electric propulsion

USRC Inspiring Next Generation of Aviation Entrepreneurs

USRC Seeks Student Ideas

- Students propose their novel, entrepreneurial aviation ideas
- 3 proposal cycles per/year, proposals due around February, June, November
- 3-page technical proposal
- Receive up to \$80K for 1 year
- 5 USRC awards / year
- · Gain technical and entrepreneurial skills
- Teams use crowdfunding
- Interface with NASA experts
- Open to all majors and interdisciplinary teams

29 awards total, 11 funded by OSTEM Space Grant Office

Virginia Tech team acquired \$40k+ in industry support (Northrop, Boeing, etc.). Won top prize at the Student Manufacturing Design Competition

Michigan State University Recognized at MSUxRutgers game Presented at International Auto Show

ERAU team lead worked with ArduPilot. 10 companies interested in technologies for UAS reliability and failure diagnosis

Using Gateway to Blue Skies Competition to Crowdsource New Ideas

Student Group Competitions

- New competition theme each year
- As a team work on a future aviation concept
- Competition opened July 25, 2023, finished May 30-31, 2024
- A 5-to-7-page paper/design study and an infographic
- Top 8 teams present to NASA
- · Winning team receives NASA internships
- 1 competition / year
- Increase college students' interest in climate friendly aviation research
- · Gain systems-level thinking
- Open to all majors and interdisciplinary teams

2022: Airports of Tomorrow

- Ohio State students briefed Las Vegas airport executives on carbon capture and carbon reducing options
- U Penn students briefed Houston airport executives on their ideas for a new airport terminal design

2023: Clean Aviation Energy

- Boston U students proposed Aluminum Powder Combustion
- Directed Energy Beam Propulsion from UC San Diego

2024: Advancing Aviation for Natural Disasters

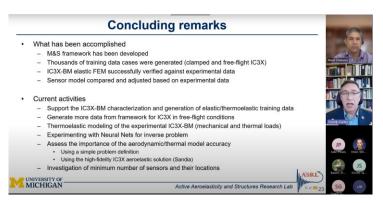
- For earthquake response, Cal Poly Pomona students proposed using airship, small and micro drones
- Columbia U students proposed a tail sitter drone to measure snowpack conditions used to predict avalanche risk

Developing Aviation Maintenance for Advanced Aviation Concepts

Targets Advanced Air Mobility, Electric and Hydrogen Propulsion

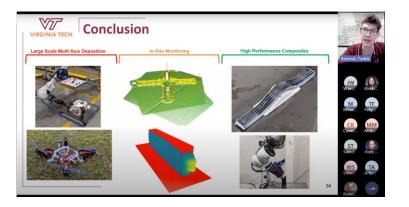
- Research future aviation maintenance technical challenges not yet addressed in current Aircraft Maintenance Technician Schools (AMTS) curricula
- 2-year duration, up to \$300k/year, \$50k of which goes to AMTS
- Pathfinder, potentially every 2 years
- Universities partnering with AMTS and the aviation industry
- Engaging undergraduate, graduate, and AMTS students

PI Anand K. Gramo Dean of Engineering, C and Applied Scien Co-I Kapil Chalil Mi Industrial Enginee	omputing ces idathil	Co-I Crysta Executive		Co-I Jonathan Beck Executive Director, NCAT Co-I Zack Nicklin Uncrewed Aerial Systems Instructo	
UVU Stephen Ley Kard		BORATORS U Johnson echnologies	A CH	00SE ISPACE ertzen lent,	Rebecca Short Internal Evaluation
				(GAMA	
		100			



Disseminating Research through Tech Talks

ULI Tech Talks


- ULI research dissemination to NASA, industry, and academia
- Catalyzing research collaborations

9-14-23 ULI Tech Talk: FAST Full Airframe Sensing Technology for Hypersonic Aerodynamics Measurements

- https://uli.arc.nasa.gov/ talks/
- Previous Tech Talks available to stream

- **USRC Tech Talks**
 - Awareness and subject matter expert connections for USRC student research within NASA, industry, and academia

7-24-23 USRC Tech Talk: Robotic Aerial Vehicle Fabricator

 450+ on invite list between NASA, Academia, and Industry

Increased Participation of Universities in Aeronautics Research

Achieving Aviation Outcomes

University of South Carolina led Filter bank multi-carrier for L and C band

- aviation networking that can be part of LDACS 3 standard. Would improve aviation datalink communication robustness and efficiency
- Deployed mmWave airport networks to increase communication, capacity and security for wide range of applications
- What's Next: NSF and industry funded \$24M infrastructure project at NC State to support experiments related to sUAS detection, 5G, UTM, and AAM

Augmented Morphing Map¹

Texas A&M University led

atmospheric conditions ahead · "Morphing map" relates flight conditions

conformal adaptive outer mold line shape · What's Next: UI project funded a subset of team for 2 years to develop flight experiments in collaboration with NASA's Flight Demonstrations and Capabilities and Commercial Supersonic Technology projects

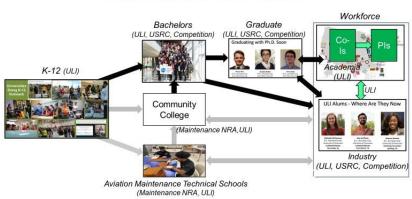
Technology Research Institute award (\$15M)

· Real-time LiDAR system to sense (Mach number, Angle of attack) to

Project data is curated and will be publicly available to provide a large amount of process-microstructureproperties data for others to use and investigate.

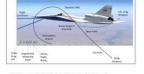
What's Next: A CMU-led NASA Space

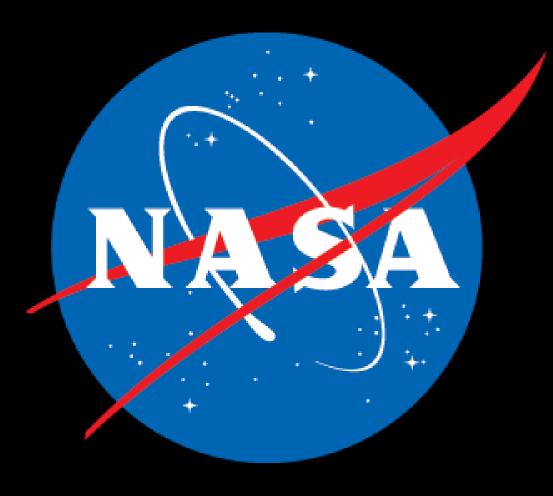
Carnegie Mellon University led


parameters (laser power, scan speed, .

and fatigue (a key mechanical property)

Connection between Additive


Manufacturing printing process


Impacting Workforce Pipeline

University innovation of today influencing aviation of tomorrow

