

The Role of Economics in the Promotion of Food Safety

Robert L. Scharff
The Ohio State University

Disclosures

(interests over prior 12 months)

- Employer: The Ohio State University
- Grants/Research Support
 - USDA NIFA
 - USDA HATCH
 - Bill and Melinda Gates Foundation
- Advisory Board
 - Global Food Safety Initiative
- Food Industry Stocks
 - Wendy's, El Pollo Loco (total value < \$3,000)

An Economist's View of Food Safety

Goal: Maximize Social Welfare from Food Safety Measures

- Social Welfare: The well-being of everyone in a society (Σ utility).
 - Based on residents' values for health, goods & services, and other outcomes.
- Loss of Social Welfare: What people are willing to pay to avoid risk from foodborne illness.
- <u>Tradeoffs</u>: There is a tradeoff between health and other things that improve well-being ⇒ We must make choices!

Key Tasks for Economists:

- 1. Estimate Economic Burden of Illness
 - Attribution to foods and pathogens
 - Prioritization of Hazards
 - Input into Intervention Evaluation
- 2. Understand Incentives
 - Guide the design and evaluation of interventions
- 3. Evaluate Interventions
 - Determine whether social welfare is improved by an intervention

1. Estimating Burden of Illness

Burden of Illness: The impact of a health problem for a given population over a specified period of time.

Basic Burden Measures:

- The incidence or prevalence of illness in the population.
- Good as an input for economic burden measures when the goal is to evaluate interventions that reduce future illness or reduce the effects of chronic disease (prevalence).

Economic Burden of Illness:

- Combines illness estimates with economic cost estimates.
- A means of demonstrating loss of social welfare
- Can be used to help prioritize public health efforts
- Can be used to evaluate the effectiveness of proposed interventions

Focus on Health-Related Economic Burden of Foodborne illness

Adapted from USDA-ERS

Economic
Burden/Cost
Of Foodborne
Illness

Food Industry Costs
Regulatory compliance
Product recalls
Plant closing/cleanup
Product liability
Reputation costs
Admin. costs

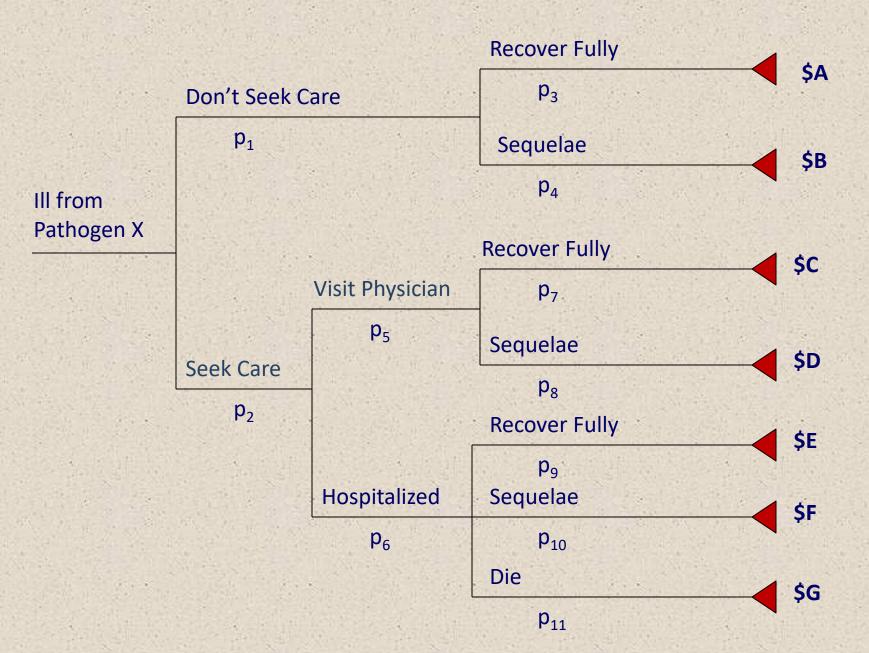
Household Costs
Mortality
Medical care
Work loss
Pain and suffering
Caregiver
Self-protection

Government
Disease surveillance
Outbreak response
Health care
Disability payments

Financial Cost vs. Economic Burden

Financial Costs

- Medical costs
- Productivity losses
- Caregiver costs
- Other tangible costs to society (e.g. industry and government)


Ideal to use economic costs.

Why? A better measure of social welfare losses.

Economic Burden

- Financial costs +
- Pain and suffering
- Lost life expectancy

Disease Outcome Tree - Cost Per Case

Illness Model

Reported illnesses

Adjustment Factors

Underreporting Underdiagnosis

Disposition of Cases

Doctor

Hospital

Death

Number of Illnesses by Pathogen and Outcome

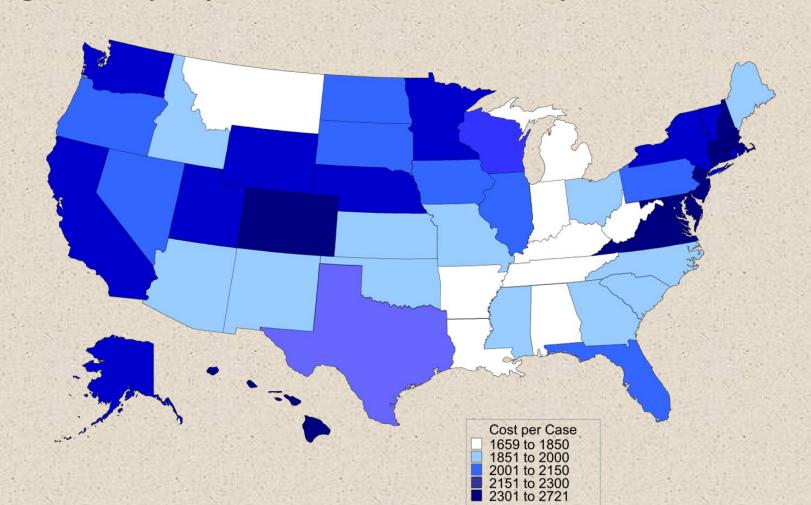
Economic Cost Model

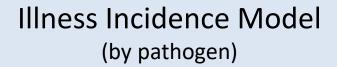
Economic Costs

Medical Care Productivity Losses

Death

Pain and Suffering


Cost Per Case by Pathogen and Outcome


Economic Cost of Illnesses

Cost Per Case Variation – State Differences

Important Factors: Health care costs, wages/employment, food consumption

The Economic Burden Model + Food Attribution

Food Attribution Model

(by food category)

Illnesses

(by pathogen, food category)

Economic Costs

(by pathogen, food category)

Economic Model

(by pathogen)

Health-Related **Economic** Costs Attributed to **Leafy Greens**

Economic Cost of Leafy Green Illnesses (\$million) per year ^a

		Economic	90% CI ^b	% in all	Economic	90% CI	% in all			
1		Cost		leafy	Cost		leafy			
E			M1 ^d			M2				
ď.	Lettuce family	2,925.07	(844.21-	70.0	3,207.24	(2,060.50-	60.8			
			6,553.32)			4,855.65)				
	Lettuce,	1931.71	(575.07-	46.2	2664.07	(1717.83-	50.5			
*	other ^c		4300.72)			4024.09)				
	Romaine ^c	728.52	(239.20-	17.5	377.53	(220.81-	7.2			
			1529.26)			602.87)				
3	Iceberg ^c	264.84	(29.95-	6.3	165.64	(121.83-	3.1			
			723.34)			228.64)				
	Cabbage	310.63	(5.23-	7.4	401.44	(96.48-	7.6			
	Cabbage	310.03	980.59)	7.4	401.44	839.97)	7.0			
	0	404.50	•	4.0	100.01		0.4			
-	Spinach	181.58	(27.88-	4.3	126.31	(79.12-	2.4			
			442.54)			194.17)				
	Kale	30.55	(1.49-	0.7	11.77	(10.13-	0.2			
			89.85)			14.14)				
3	Parsley	144.36	(0.08-	3.5	327.09	(322.15-	6.2			
			456.42)			334.21)				
	Arugula	26.01	(1.23-	0.6	10.92	(6.32-	0.2			
	7 ii digana.		78.49)	0.0		17.55)	V			
	Other Leafy	558.86	(492.06-	13.4	648.56	(614.50-	12.3			
	Office Leary	330.00	688.19)	13.4	040.30	697.55)	12.3			
			,		- 4 4 00	•				
	Mixed Leafy	0	/	0.0	544.60	(41.34-	10.3			
						1268.32)				
1	All Leafy	4177.99	(2324.85-	100	5277.95	(3230.48-	100			
3			7688.04)			8221.11)				

The major cost components change in CPI was updated to the March 2023 level and cost estimates from Scharff (2012)

^b 90% CI is the 90% confidence interval.

^c The estimates of three lettuce subcategories sum up to the estimate of lettuce family.

^d These models are represented as follows: Interagency Food Safety Analytics Collaboration, 2021 (M1), and Triangular distribution-based attribution model adapted from Painter et al., 2013 (M2).

Prioritization of Food Safety Hazards

Illness-Based Burden of Illness:

- Illness-based measures have difficulty with severity
- Disability Adjusted Life Year (DALY) estimates are better, but
 - Are not consistent with social welfare
 - Do not include financial costs of foodborne disease.

Using Economic Burden of Illness:

- Weights illnesses by severity
- Reflects value of safety to consumers (social welfare)

Limits to the Use of Any Burden of Illness Measure:

- National priorities may not equal regional priorities
- Emerging pathogens may not be accurately reflected
- Feasibility of mitigation is not considered

Ranking Burden of Disease for Leafy Greens

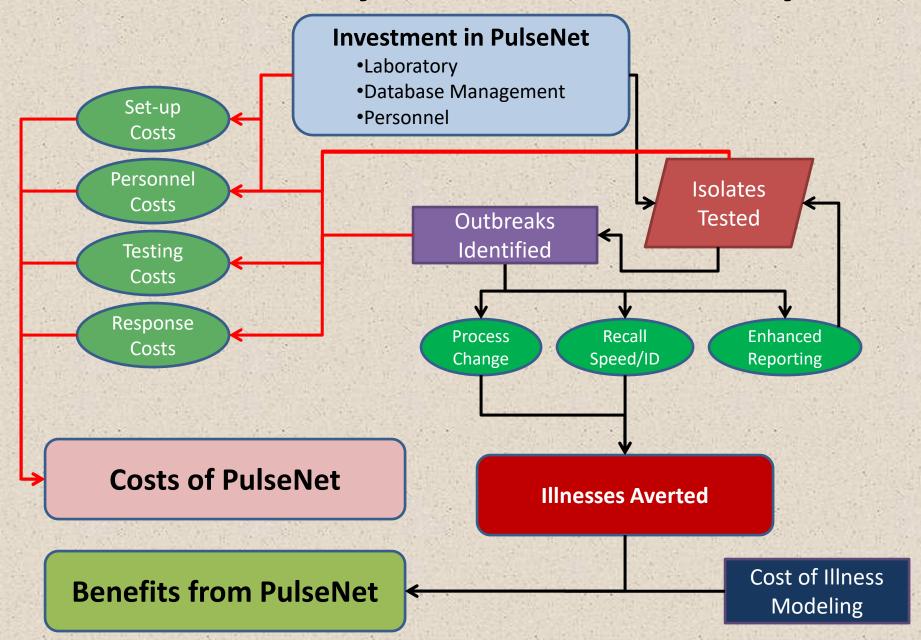
(selected

pathogens)

		# of ill	nesses	Economic Cost	
Š				(million \$)	
		(Rar	nking)	(Ranking)	
	Models	M1	M2	M1	M2
	Pathogen ^a				
	Bacillus cereus ^c	249	1,993	0.11	0.86
	Bacinas cercas	(7)	(7)	(10)	(11)
	Campylobacter spp.	37,425	56,259	550.64	827.75
8	oumpyrousers opp.	(3)	(2)	(2)	(1)
	STEC 0157:H7	20,561	15,244	534.15	396.02
055		(5)	(6)	(3)	(4)
	STEC Non-O157	52,931	24,449	175.13	80.89
		(2)	(3)	(6)	(7)
	Listeria	82	36	188.91	84.41
	monocytogenes	(9)	(10)	(5)	(6)
	Salmonella,	25,356	21,926	468.96	405.52
	nontyphoidal	(4)	(4)	(4)	(3)
53	Shigella,spp ^b	91	18,434	1.44	291.83
	3 711	(8)	(5)	(8)	(5)
	Staphylococcus aureus	0	1,577	0.00	1.75
		(11)	(8)	(11)	(10)
	Vibrio	0	0	0.00	0.00
	parahaemolyticus	(11)	(12)	(11)	(12)
	Cyclospora	1,049	1,012	6.20	5.98
	cayetanensis	(6)	(9)	(7)	(8)
	llopotitio A b	14	26	0.92	1.78
	Hepatitis A ^b	(10)	(11)	(9)	(9)
	Norovirus	710,121		799.42	659.34
	INDIOVITUS	(1)	(1)	(1)	(2)
	<i>Giardia</i> spp. ^ď	18,339	16,690	171.36	155.95
		=			

2. Understanding Incentives

Understanding incentives is critical for the design, implementation and evaluation of food safety measures


- Design: How will targeted stakeholders react to new regulations? Unintended consequences?
- Implementation: Has enough been allocated to enforcement to ensure compliance?
- Evaluation: What is driving behavior change?

3. Evaluate Interventions

Role of Economics in Policy Evaluation

- Evaluate Need for an Intervention
 - Does the market respond to consumer demands for health?
 - Key: Is there a market failure? (generally, "yes" for food safety)
- Develop and Test Potential Interventions (if needed)
 - Determine what works in theory
 - Test effectiveness in real-world conditions
 - Keep Incentives in mind
- Evaluate Costs and Benefits of Tested Interventions
 - Economic Evaluation of interventions (CBA or CEA)
 - Ideally: evaluate best combinations of multiple interventions

Benefit-Cost Analysis of the PulseNet System

Summary – Economics Can...

- Provide burden estimates that:
 - Reflect loss of social welfare
 - Aid in prioritization of hazards
- Reveal how incentives shape behavior
- Help in the design, implementation, and evaluation of interventions

Thank you!

Questions?

Contact me at:

Scharff.8@osu.edu