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Flatiron network of U.S. oncology clinics and academic hospitals
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EHR-based RWD exists in structured and unstructured formats, and
N be combined with non-EHR data
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Abstraction of unstructured data can provide critical, complex clinical
information, but is resource intensive
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Example data elements:

Test status

Test result

Date biopsy collected

Date biopsy received by laboratory
Date result received by provider
Lab name

Sample type

Tissue collection site

Type of test (e.g., FISH)

Assay / kit (e.g., Dako 22C3)
Percent staining & staining intensity



ML/Al technology can unlock scale
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Abstracted initial,
advanced diagnosis
dates

initial dx date: 2016-03-01
adv _dx _date: 2016-07-23
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Filter to sentences with
informative terms and

assign dates

2016-10-07
“...presents with NSCLC, no
evidence of metastases...”

2017-2-15
“...metastatic since Feb 15,
017,

-------

...................................................................

Model learns which
phrases indicate
metastatic diagnosis
based on training
examples

........

O

Model outputs
probability scores for
each date, which are
rolled up to a final data
model

IsMetastatic: true

MetastaticDxDate:
2017-02-15



Challenges for the future

e Finding the right balance between
uman and technology
e Continuing to innovate b
eveloping novel capabilities to
Improve accuracy and scale

Ref: Estevez et al. Cancers 2022 ; Castellanos et al. JCO CCI 2024;
Kiyasseh et al, Nature Communications 2024; Cohen et al, ISPOR
Annual Meeting 2024
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Considerations for the Use of Machine Learning Extracted
Real-World Data to Support Evidence Generation:

A Research-Centric Evaluation Framework
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PURPOSE

Electronic health record (EHR)-based real-world data (RWD) are integral to
oncology research, and understanding fitness for use is critical for data users.
Complexity of data sources and curation methods necessitate transparency into
how quality is approached. We describe the application of data quality di-
mensions in curating EHR-derived oncology RWD.

METHODS A targeted review was conducted to summarize data quality dimensions in

CONCLUSION

frameworks published by the European Medicines Agency, The National In-
stitute for Healthcare and Excellence, US Food and Drug Administration, Duke-
Margolis Center for Health Policy, and Patient-Centered Outcomes Research
Institute. We then characterized quality processes applied to curation of Flatiron
Health RWD, which originate from EHRs of a nationwide network of academic
and community cancer clinics, across the ized quality 1

The primary guality dimensions across frameworks were relevance (including
subdimensions of availability, sufficiency, and representativeness) and reli-
ability (including subdimensions of accuracy, completeness, provenance, and
timeliness). Flatiron Health RWD quality processes were aligned to each di-
mension. Relevancy to broad or specific use cases is optimized through data set
size and variable breadth and depth. Accuracy is addressed using validation
approaches, such as comparison with external or internal reference standards or
indirect benchmarking, and verification checks for conformance, consistency,
and plausibility, selected on the basis of feasibility and criticality of the variable
to the i ded use case. Compl is d against expected source
documentation; provenance by recording data transformation, management
procedures, and auditable metadata; and timeliness by setting refresh fre-
quency to minimize data lags.

Development of high-quality, scaled, EHR-based RWD requires integration of
systematic processes across the data lifecycle. Approaches to quality are op-
timized through knowledge of data sources, curation processes, and use case
needs. By addressing quality dimensions from published frameworks, Flatiron
Health RWD enable transparency in determining fitness for real-world evidence
generation.
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Fine-tuned LLMs
accurately extracted
complex biomarker
testing details and
results from
unstructured clinical

documents

Limitations

= Results may not translate to other biomarkers, and specifically ones
that are not standard of care.

* More work is required to ses whether fine-tuning on a range of clinical
tasks would lead to improved parformance.

Conclusions

o LLMs, fina-tuned with high-quality labeled data, accurately extractsd
complex PD-L1 test details from the EHR despite considerable
variability in eancer type, documentation, and time.

= Zero-shot prompt extraction not as effective at model scale examined

« Validation required access to high-guality data labeled by experts with
access 1o the source EHR.
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A framework for evaluating clinical artificial
intelligence systems without ground-truth
annotations
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A clinical artificial intelligence (Al) system is often validated on data withheld
during its d P . This provides an estimate of its performance upon
future deployment on data in the wild; those currently unseen but are
expected to be encountered in a clinical setting. However, estimating perfor-
mance on data in the wild is complicated by distribution shift between data in
the wild and withheld data and the absence of ground-truth annotations. Here,
we introduce SUDO, a framework for evaluating Al systems on data in the wild.
Through experiments on Al systems developed for dermatology images, his-
topathology patches, and clinical notes, we show that SUDO can identify
unreliable predictions, inform the selection of models, and allow for the pre-
viously out-of-reach assessment of algorithmic bias for data in the wild without
ground-truth annotations. These capabilities can contribute to the deploy-
ment of trustworthy and ethical Al systems in medicine.

Published onfine: 28 February 2024
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A clinical artficial intelligence (Al) system is often developed to To address this need, previous work assumes highly-confident
achieve some task (e, diagnose prostate cancer’) on some training predictions are reliable**, even though Al systems are known to gen-
data and subsequently validated on a held-out set of data to which it  erate highly-confident incorrect predictions’. Recognising these lim-
has never been exposed. This widely-adopted evaluation process Iitations, others have demonstrated the value of modifying Al-based
assumes that the held-out data are representative of data in the wild’; ~ confidence scores through explicit calibration methods such as Platc
those which are currently unseen yet are expected to be encountered  scaling™ or through ensemble models®. Such calibration methods,
in a clinical setting. For example, an Al system may be trained on data  however, can be ineffective when deployed on data in the wild that
from one electronic health record (EHR) system and exhibit distribution shift". ifying i
deployed on data from another EHR system. However, datain thewild  calibration methods would still require ground-truth labels, a missing
often (a) follow a distribution which is different from that of the held- element of data in the wild. Another line of research focuses on esti-
out data and (b) Tack ground-truth labels for the task at hand (Fig. 1a). mating the overall performance of models with unlabelled data™*.
Combined, such distribution shift which is known to adversely affect  However, it tends to be model-centric, ing the d i
Bebehavious ot Al e cubLbols o o id gunceliable predictions) that would need to
hese models, and makes the oft fallible
L ULl D LU B of data is representative of datain the
 extends findings in the former setting

| pseudo-label discrepancy (SUDO), a
ystems deployed on data in the wild.
clinical datasets (dermatology images,
hical notes), we show that SUDO can be

ity School of Medicine, New York City, NY,
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