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Formal Privacy in Statistical Disclosure Control

Statistical Disclosure Control (SDC) aims to limit particular measures of disclosure risk, e.g.:

• Reidentification: isolation of uniques [Swe02] ; model-based reidentification [FS98; SS08] ;

• Reconstruction: e.g. linkage a�acks [DFT03; Win04] .

Formal privacy in SDC saw major development over the last decade or so.

• Principles [BG21; SM+24] :

• Provability;

• Composition;

• Post-processing invariance;

• Transparency (algorithmic X; statistical ? [Gon22] ).

• Di�erential privacy: a class of cryptographic standards. Crudely speaking [BGM24a; BGM24b] :

For all potential data universes D ∈ D and protection objects x, x′ ∈ D,

dPr

[
Px(T ∈ ·),Px′(T ∈ ·)

]
≤ εDdX (x, x′).
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Formal Privacy in Statistical Disclosure Control

The evolution of the di�erential privacy definition: catering to a variety of application domains

• From 2006: ε-indistinguishability [Dwo+06b] . . .

• . . .to today:

• Variations in output metric: (ε, δ)-approximate DP [Dwo+06a] Rényi DP [Mir17] concentrated DP [BS16]

f -divergence privacy [BD14; BO13] f -DP (including Gaussian DP) [DRS22];

• Variations in input metric: (R, ε)-generic DP [KM11] edge vs node privacy [Hay+09; MM10] d-metric DP

[Cha+13] Blowfish privacy [HMD14] element level DP [ADJ22] distributional privacy [ZLW09] event-level vs

user-level DP [Dwo+10];

• Variations in the protection domain: privacy under invariants [Ash+19; GM20; GGY22; Dha+23] conditioned or

empirical DP [ASV13; CH16] personalized DP [ESS15; JYC15] individual DP [Sor+17; FZ22] bootstrap DP [OC19]

stratified DP [Bun+22] per-record DP [See+23] per-instance DP [Wan18; RW21];

• Variations in applicable data structures: DP for network data [Hay+09] for geospatial data [And+13]

Pu�erfish DP [KM14] noiseless privacy [Bha+11] privacy under partial knowledge [SRS22] privacy

amplification [BKN10; BBG20; Bun+22].

See generally [DP20] .
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Formally Private Disclosure Mechanism Design: State of Research

In terms of modes of data access [Kar16; Hot+22] :

• Direct access (e.g. RDCs)

• �ery access

(more)

• Dissemination access

(less)

In terms of the disclosure approach [SS23] :

• Design-based

(more)

• Adjustment-based

(less)

· · ·
We know more about how to carry out a particular statistical estimation task (and publish the

result) under an explicit formal privacy definition.

• e.g. point estimation [Smi11] , hypothesis testing [AS18; Can+19; Bar+19; BJ22] , confidence intervals

[Du+20; KV18; WKL19; Dre+22; FWS22] , linear regression [She17; BS19; AV22] . . .

• But see [Bar+24] (“DP methods are feasible for simple, univariate statistics but struggle to

produce accurate regression estimates and confidence intervals”)

We know less about how to design formally private mechanisms for the public dissemination of

“raw data” that are well-suited for downstream use.
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Formally Private Disclosure Mechanism: Adoption in National Statistics

• Large-scale tabular datasets with consistency constraints

• TopDown algorithm: 2020 U.S. Decennial Census P.L. and DHC files [Abo+22]

• SafeTab: Detailed DHC files [Tum22]

• Di�erentially private synthetic data

• NIST PSCR Di�erential Privacy Synthetic Data Challenge: see generally [BS21]

• Israel’s National Registry of Live Births [HC24]

• Synthetic data + di�erentially private verification or validation servers: toward tiered access

• *O�ice of Personnel Management personnel records [Bar+18]

• (under development) IRS Statistics of Income Division + Urban Institute [Bar+24]

? Large-scale longitudinal surveys, panel studies, complex surveys

• (not yet) American Community Survey (ACS) [Uni22] (“Our current assessment is that the science

does not yet exist to comprehensively implement a formally private solution for the ACS”)

• (not yet) Survey of Income and Program Participation (SIPP) [SM+24] (“[T]he statistical tools have

not yet advanced to the point that they could create a di�erentially private synthetic dataset for the

size and complexity of SIPP”)
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Research �estions for the Near Future

1. Formally private SDL methods that are suited to the reality of o�icial statistics

• “Minimally invasive”: compatibility with existing protocols and procedures [Das+22]

• Tailored to the modes of data access and disclosure approaches

• Inter-agency data sharing [Adv22] , data blending [SM+24] , downstream use [Ste+22] , and misuse (!)

2. A data processing “pipeline” view of formal privacy

• Accounting for sampling, measurement, editing, imputation, nonresponse and other

model-based or model-assisted adjustments

• e.g. “privacy for free” [WFS15] ; amplification [BKN10; BBG20; Bun+22]

3. Privacy-usability tradeo� assessments that are . . .

• . . .not under-inclusive: complexities of disclosure risk [Ken+21] , complexities of usability criteria

• . . .not over-inclusive: resource constraints, practicality [Elt22]

4. Workable integration of rigid formal privacy standards with:

• Sectoral (e.g. HIPAA, FERPA) and omnibus (GDPR-like) legal requirements

• Articulated privacy and confidentiality directives (Five Safes [DRW16] , contextual integrity [Nis04] )

• Intuitive expectations from data contributors and data users
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