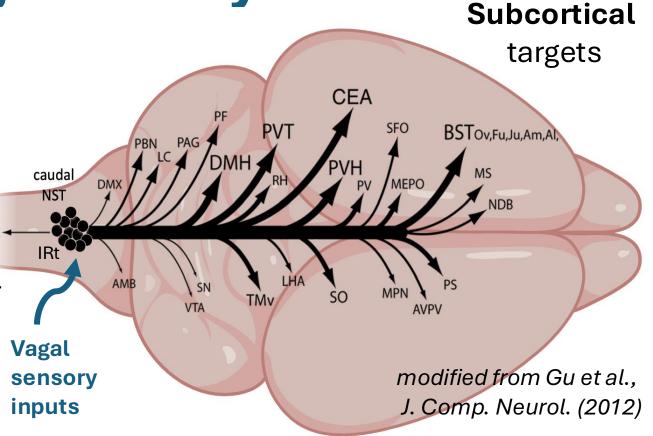
Central GLP1 Neurons, Axonal Projections, and Responses to Systemic GLP1R Agonists (GLP1Rags)

Linda Rinaman, Ph.D. Dept. of Psychology and Program in Neuroscience Florida State University

No Conflicts to Declare

The Central GLP1 Projection System

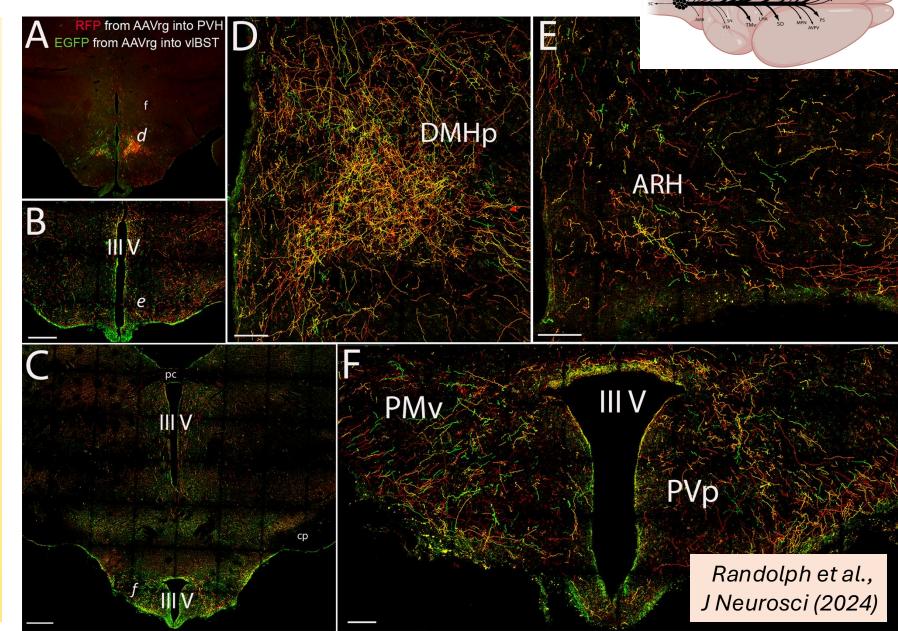

Gcg-expressing **GLP1 neurons** located in the hindbrain (caudal NST and IRt)

Activation of **GLP1 neurons** or central **GLP1R's** suppresses motivated behaviors

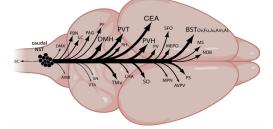
 Food intake, drug self-administration, operant responding, exploratory behavior

GLP1 neurons "go offline" during states Vag of negative energy balance se

 Accompanied by increased food intake, drug self-administration, operant responding, exploratory behavior

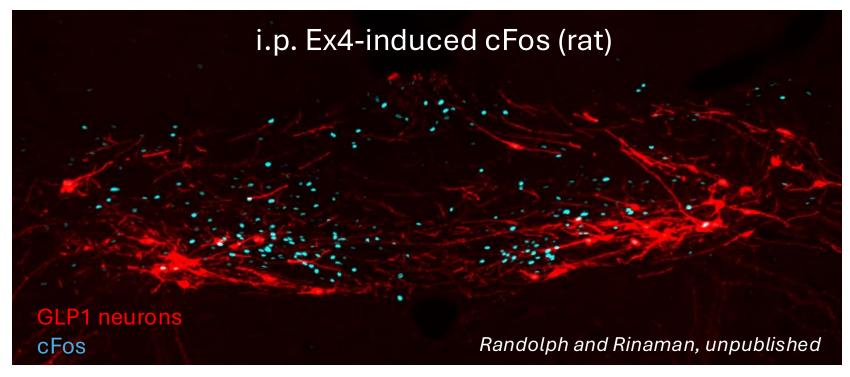

The endogenous GLP1 system modulates motivated behavior in a metabolic state-dependent manner

Maniscalco & Rinaman, Physiology (2018)


The Central GLP1 Projection System

GLP1 axons innervate many subcortical brain regions

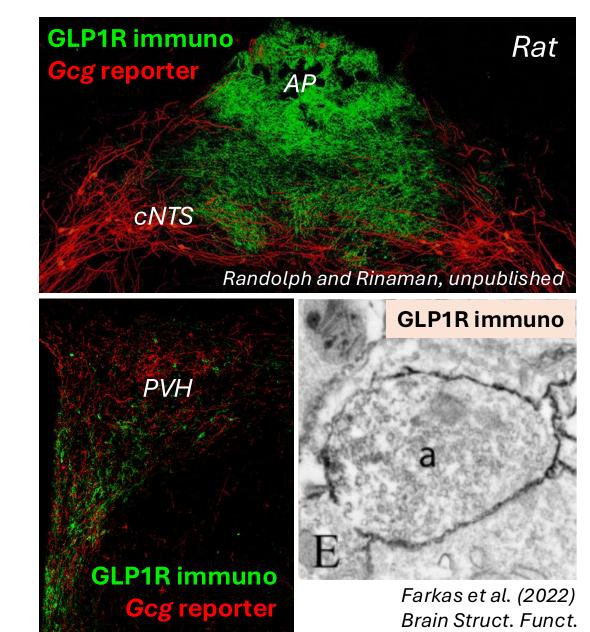
- GLP1 neurons that target one brain region (e.g., PVH, PVT, BST) have axon collaterals that reach <u>all</u> central GLP1 axonal targets
- *Glp1r* is expressed in all these subcortical target regions, and in cortical/hippocampal regions that lack GLP1 axonal input.
 - Is GLP1R trafficked to terminals in regions that <u>do</u> receive GLP1 input?

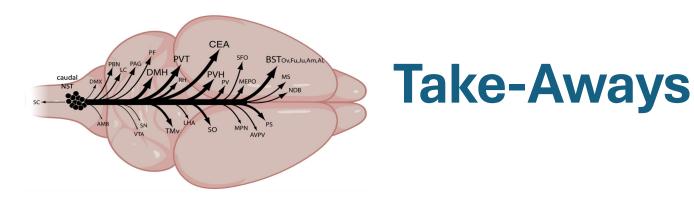


Systemically Administered GLP1RAgs Do Not Recruit the Central GLP1 Neural Projection System

Hindbrain GLP1 neurons...

- 1) do not express *Glp1r*
- 2) receive little or no synaptic input from *Glp1r*-expressing neurons in the nodose ganglion or area postrema
- 3) are unnecessary for eating suppression after systemic dosing with GLP1RAgs (liraglutide, semaglutide)
- 4) are not activated to express cFos after systemic GLP1RAgs (semaglutide, exenatide/Ex-4)


However, ablation of *Glp1r*-expressing neurons in the hindbrain dorsal vagal complex blocks the ability of systemic GLP1RAgs to suppress intake


Secher et al., J Clin Invest (2014); Card et al., J. Comp. Neurol (2018); Brierly et al., Nature Metab (2021); Huang et al., Nature (2024)

Do Systemic GLP1RAgs Directly Access Central GLP1R's?

Circumventricular organs (CVOs = no blood-brain barrier)

- Area postrema, median eminence, AV3V
- Peri-ventricular and peri-CVO regions
 - Medial hypothalamic nuclei, NST
- Ability to detect binding of FL-tagged GLP1RAgs may underestimate drug access to CNS targets
 - GLP1RAg binding promotes receptor internalization; competition with endogenous GLP1 in non-fasted state?
 - Central GLP1R's are trafficked and inserted into axon terminal membranes; difficult to visualize binding?

- 1. The endogenous central GLP1 system contributes to metabolic statedependent modulation of motivated behavior.
- 2. Hindbrain GLP1 neurons are neither directly nor indirectly engaged by systemically administered GLP1Rag's.
- 3. Systemic GLP1Rags may access only a subset of central GLP1R's, including those in CVO's and adjacent brain regions.
 - Current fluorescent imaging techniques may underestimate brain penetrance
- 4. GLP1R protein is more prevalent in axon terminals vs. neuronal cell bodies
 - Endogenous GLP1 and GLP1Rag's may bind GLP1R in regions beyond those in which Glp1r mRNA is expressed.

Research Gaps and Opportunities

- 1. Perinatal development of GLP1/GLP1R system
 - Accounting for individual differences in responsiveness to GLP1RAg's?
- 2. Sex differences in endogenous GLP1/GLP1R system
 - Why are systemic GLP1RAg's more effective for weight loss in women?
- 3. Does chronic exposure to GLP1RAg's impact central GLP1R?
 - If so, where, and is the effect reversible?
 - Is the potential impact on GLP1R more robust or long-lasting after adolescent-onset GLP1Rag treatment?

Rinaman Lab Research: Jamey Maniscalco, Huiyuan Zheng, and Abigail Randolph