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The potential outcomes framework offers a 
conceptual apparatus for defining causal effects
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Direct Acyclic Graph under Unconfoundedness

Note: 𝑊 denotes treatment status, 𝑌 denotes the outcome of interest, and 𝑋 denotes observed 

pretreatment confounders.



Researchers draw on various methods to estimate 
causal effects

- To adjust for pretreatment heterogeneity, researchers may use 
regression imputation, propensity score matching (PSM), and inverse 
probability weighting (IPW)
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Researchers draw on various methods to estimate 
causal effects

- To adjust for pretreatment heterogeneity, researchers may use 
regression imputation, propensity score matching (PSM), and inverse 
probability weighting (IPW)

- Flexible machine learning methods can be used to fit the outcome 
or propensity score models

- Researchers have adapted machine learning methods to estimate 
causal parameters to mitigate concerns central to causal inference 

- Machine learning methods perform well when combined with the so-
called “doubly robust estimators” of average treatment effects 

- To minimize overfitting, we use sample splitting or cross-fitting

6



7

Researchers should routinely attend to response 
variation, i.e., ‘treatment effect heterogeneity’

- Individuals differ not only in pre-treatment characteristics (i.e., pre-
treatment heterogeneity), but also in how they respond to a common 
treatment (i.e., treatment effect heterogeneity)

- Treatment effect heterogeneity has important implications for social and 
behavioral research and social policy 
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Researchers should routinely attend to response 
variation, i.e., ‘treatment effect heterogeneity’

- Individuals differ not only in pre-treatment characteristics (i.e., pre-
treatment heterogeneity), but also in how they respond to a common 
treatment (i.e., treatment effect heterogeneity)

- Treatment effect heterogeneity has important implications for social and 
behavioral research and social policy 

- Yields important insights into how scarce social resources are 
distributed in an unequal society

- Helps extrapolate findings to diverse populations and contexts

- Plays a critical role in guiding evidence-based policy

- Various methods help us uncover response variation, including machine 
learning



Research objective
- Examine the distribution of effects of college completion on 

low-wage work

Data and variables
- National Longitudinal Survey of Youth 1979 (NLSY)

- Treatment: College completion by age 25

- Outcome: Low-wage work age 25-50
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Effects of Completing College on Low-Wage Work



Propensity Score Specification

Step 1: Baseline set of covariates KB

Step 2: Consider K – KB additional possible covariates in 
turn

- 176 logistic regressions, resulting in a model with 22 KL linear terms

Step 3: Consider all possible higher order and interaction 
terms [KL (KL + 1)/2] in turn

- 253 additional terms, 3,527 regressions, resulting in a model with 1 
higher order term and 12 interaction terms 
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Sociodemographic 

 Race

 Sex

 Residence

Family Background
 Parents’ income

 Parents’ education

 Fathers’ occupation

 Family structure 

School characteristics

 School disadvantage

Cognitive and psychosocial

 Test scores (ASVAB)

 College-prep. program

 Locus of control

 Delinquency

 Expectations / aspirations

 Friends’ aspirations

Family formation

 Martial status

 Had a child
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Propensity Score Specification
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Heterogeneous 
Effects of 
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- Researchers routinely explore their data to determine if subgroups 
show meaningful differences in effect estimates

- If researchers select which interactions to report from these analyses 
and do not draw on cross-validation procedures or multiple-testing 
penalties, they are subject to incorrectly failing to accept the null 
hypothesis

- It may be unclear which of the large number of possible joint 
covariates and thresholds are best to consider before analyses

- Statisticians and social and computer scientists have recently made 
progress in merging machine learning methods and causal inference

- Decision trees uncover new sources of variation

Are there important sources of variation that 

researchers may not have considered prior to data 

analysis?



- Covariates and thresholds are selected that minimize the in-sample 
loss function, and the sample is split into two new partitions

Decision trees recursively partition the data by 

covariates into increasingly smaller subsets
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Decision trees → Causal trees

- Applying a potential outcome approach to decision trees requires 
altering the objective 
- Objective: Predict, not Y, but the conditional average treatment effect

- Prefer a tree that minimizes heterogeneity in leaf-specific treatment 
effects

- Yet no “ground truth”
- Estimate an individual treatment effect

Causal tree approach extends decision trees to 

estimate causal effects



Decision trees → Causal trees

- “Honest estimation:” Split the sample into training data for generating 
partitions, and estimation data for estimating leaf-specific effects
- Modified MSE

- Enables standard asymptotic properties

- Causal trees do not guarantee unconfoundedness
- Leaf-specific adjustment, using matching, weighting, or generalized 

random forests

- Sensitivity analysis

Causal tree approach extends decision trees to 

estimate causal effects
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Causal Tree 
Algorithm 
Workflow
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Variable 
Importance 
Plot Based 
on Causal 

Forest



Causal Trees for Uncovering Effect Heterogeneity

- More disadvantaged subgroups, or those on the 
margin of school continuation, have larger effects 
of college on reducing low-wage work

- Groups identified by the causal tree are not 
identical to groups identified by theoretical priors

- Focus on the characteristics of the groups 
identified by the leaf-specific partitions
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Leaf 3 – Responsive 

Low parental income

High school 
disadvantage

Low test scores

Low parental education

Majority black or 
Hispanic

Low social control

Low propensity
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Causal Trees for Uncovering Effect Heterogeneity
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Leaf 9 – Responsive 
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Causal Trees for Uncovering Effect Heterogeneity
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Leaf 10 – Least responsive 

High income

Low school disadvantage

High test scores

High  parental education

Majority white

High social control

High propensity

Causal Trees for Uncovering Effect Heterogeneity
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Causal Inference and Machine Learning: 
Discussion

- Exciting new developments in causal inference and 
machine learning

- Uncovering sources of effect heterogeneity is one such 
development
- How do we determine meaningful sources of response variation?

- Causal trees helped highlight particularly responsive subgroups

- The most effective uses of machine learning will likely be in 
settings where social scientists can define a clear aspect of 
the problem to outsource to an algorithm
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Thank you!

http://www.profjenniebrand.com
brand@soc.ucla.edu
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