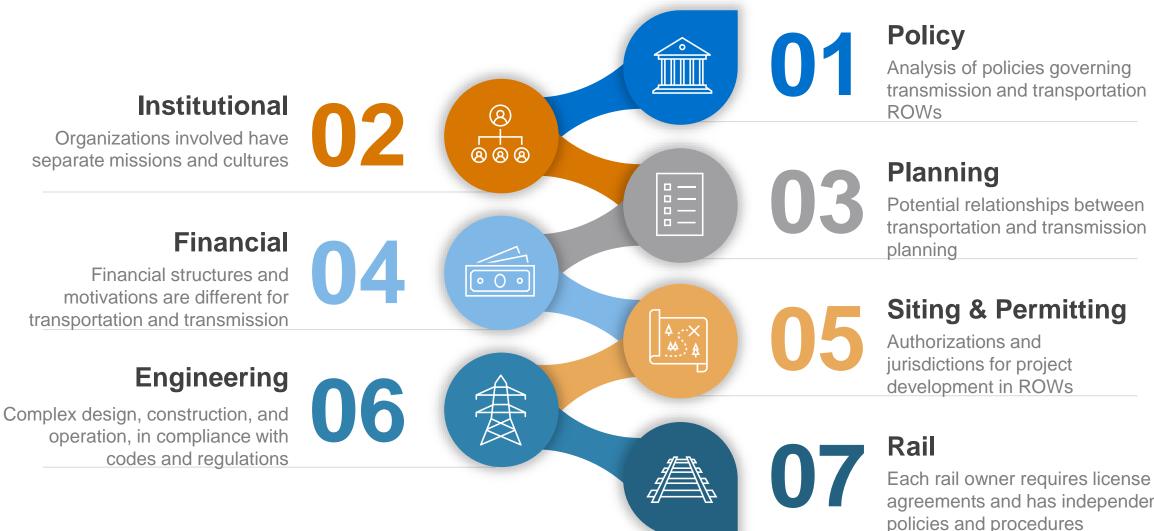


Electric Transmission in Transportation Rights-of-Way: Gaps Analysis

2025


Rebecca O'Neil, Jennifer Yoshimura, Vanessa Hamilton, Marcos Cruz, Paul Wetherbee, Lee Miller, Shannon Bates, and Kelly Gordon **(PNNL)**

Scott Gilman, Amy Plovnick, Gina Filosa, Maiya Baum, and Brennen Craig (Volpe)

Gaps organized into 7 topical areas relevant to transmission and transportation U.S. Department of Transportation Volpe Center

Pacific Northwest

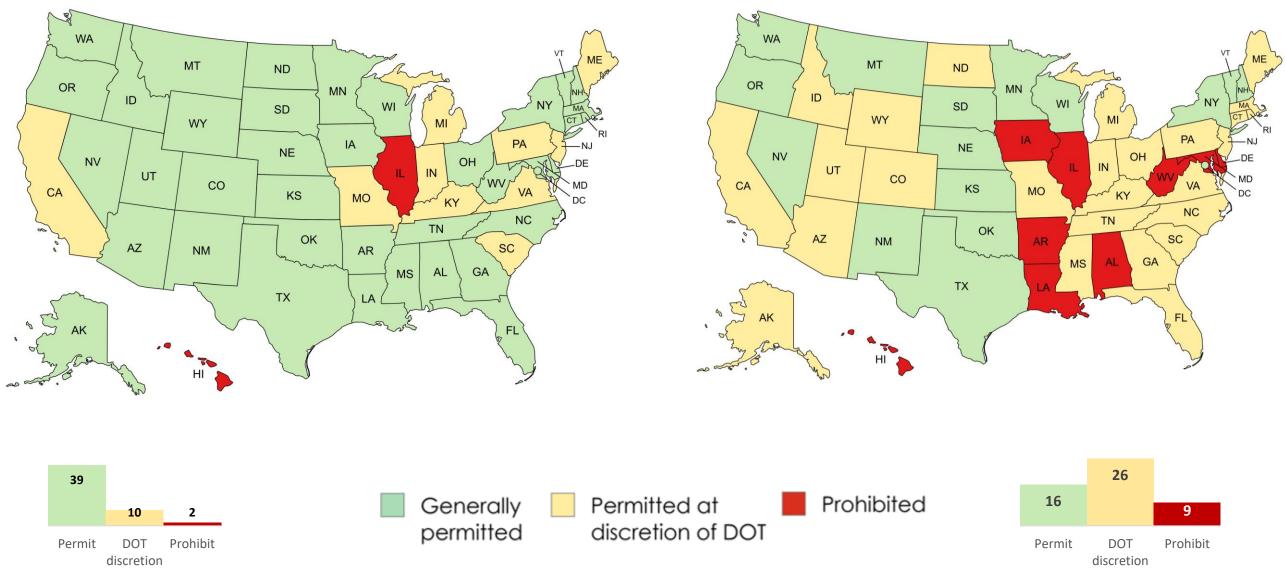
transmission and transportation

Potential relationships between transportation and transmission

agreements and has independent

Policy

Analysis of policies governing transmission and transportation ROWs


T

T

Many states restrict or prohibit the installation of transmission lines, especially in freeways

Prohibitions of Longitudinal Tx in Non-Freeways

Prohibitions of Longitudinal Tx in Freeways

A growing number of states promote the **Outpe Center** Use of Highway ROW for transmission

States with Statutory Promotion for Use of Highway ROW for Transmission

D)elaware	Promotes use of transportation ROW for renewable energy projects over 30MW and connected to PJM transmission grid (2024)	<u>84 Del. Laws, c. 401, § 13</u>
	Florida	Transportation department shall accommodate 69KV or higher lines for baseload power (2021)	2021 FL Statutes Title XXVI Chapter 337 § 401
M	innesota	Permits longitudinal transmission and requires consideration of ROW during the transmission permit application process (2024)	Sec. 161.45 MN Statutes
W	/isconsin	Comprehensive energy policy promoting use of transportation right of way (2003)	2003 Wisconsin Act 89
Maine H	New ampshire	Energy policy promoting transmission siting on specific named interstates and routes (Maine 2010, New Hampshire 2016)	Sec. A-2. 35-A MRSA § 122(1-B) (ME) Chapter 162-R Energy Infrastructure Development and Corridors (NH)

States with Pending Legislation

HB25-1292: Transmission Lines in State Highway Rights-of-Way | CCW

SB2146 (2025-2026)

SB483 (2025); HB645

Planning

Potential relationships between transmission and transportation planning

US. Department of Transportation

Transportation and transmission planning differ in important ways

TRANSPORTATION

01

Long-range Planning

- State DOT- or MPO-wide
- Vision/connection with broader goals; may include specific projects
- 20-25 years

02

Programming

- State DOT- or MPO-wide
- List of projects
- 4-5 vears

03

04

Ĭ

Project Development

- Specific project/location
- Includes NEPA, engineering/design, ROW and utility coordination

Construction & Maintenance

- Specific project/location
- Includes utility coordination and relocation

TRANSMISSION

Planning

- Multi-state region (ISO/RTO)
- Paths/connecting zones
- Utility resource planning for load/ build forecasts
- 5-30 years

Siting

- Project proponent (utility, federal PMA, merchant)
- Specific route may be multiple states
- NEPA, permitting

Engineering Design

- FERC & NERC regulatory requirements
- NESC & ASCE standards
- Accessibility and safety
- Public comments

Construction & Maintenance

• Specific route – may be in multiple states

U.S. Department of Transportation Volpe Center

Ĩ

Variation in type of entities that conduct and benefit from planning stages

TRANSPORTATION

TRANSMISSION

Constellation of authorities, public and private sector

Designed to benefit

- system performance,
- - industry coordination,
 - markets and
 - competition

01

Transportation agencies (state DOT, **MPO**) involved throughout process

03

04

Designed for public and societal beneficiaries

U.S. Department of Transportation

Ĭ

8

T

Variation in financing and capital that influence planning structures

TRANSPORTATION

TRANSMISSION

02

01

03

04

Funding from federal, state, and local government

Public investment

is patient and pre-

determined

Funding sources vary, but typically private capital and/or rate based

Engineer Private capital is

- market- and time-

- sensitive

9

U.S. Department of Transportation

Geographic and jurisdictional boundaries are different

TRANSPORTATION

TRANSMISSION

Planning

- Multi-state region (ISO/RTO)
- Paths/connecting zones
- Utility resource planning for load / build forecasts
- 5-30 years

Planning occurs within system operator or utility footprints

Unique boundaries that can change over time, utility drivers include access to generating resources and markets

Long-range Planning

- State DOT- or MPO-wide
- Vision/connection with broader goals; may include specific projects
- 20-25 years

02

Planning occurs within state DOT and **Metropolitan** Planning **Organization (MPO) boundaries**

Established and recognizable governance and spatial jurisdictions

U.S. Department of Transportation

Specific project design decisions are not well aligned on planning timelines

TRANSPORTATION

• 20-25 years

Long-range Planning

Vision/connection with broader goals; may

Key inputs about Tx in

ROW would be needed

State DOT- or MPO-wide

include specific projects

20 years before

construction

TRANSMISSION

Key inputs about Tx in ROW are available 1-5

- years before
- Public comments
 Construction

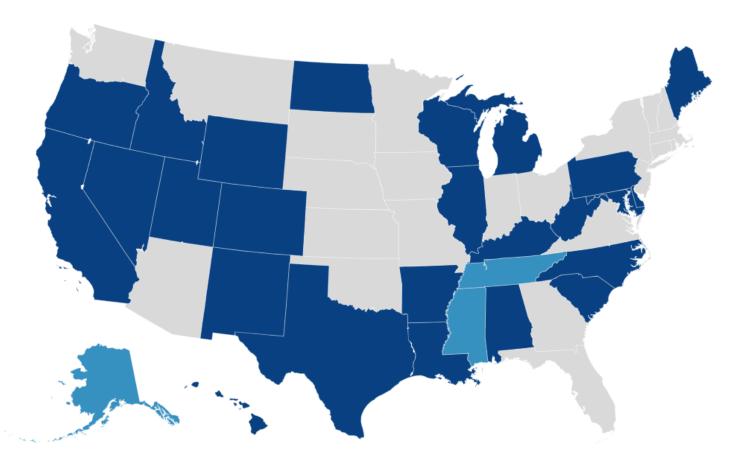
Construction & Maintenance

• Specific route – may be in multiple states

04

Siting & Permitting

Authorizations and jurisdictions for project development in ROWs

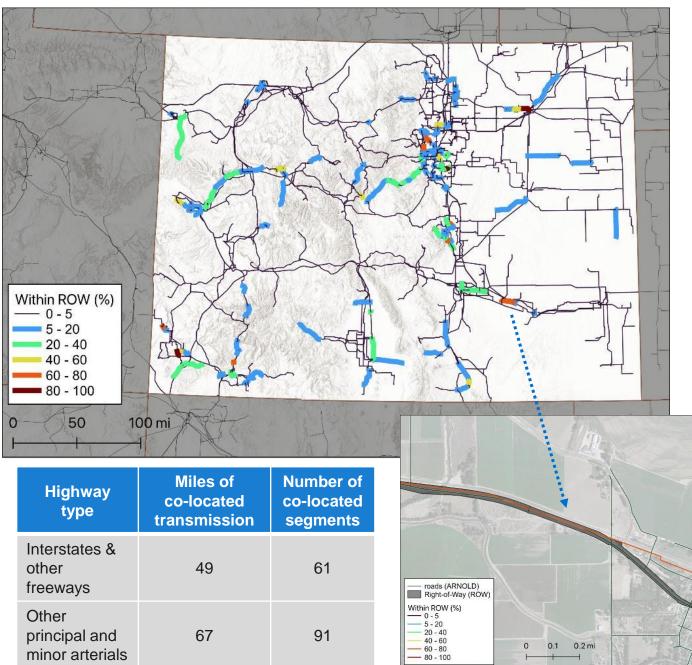


Transmission siting authorities are state-specific and highly variable

- A Certificate of Public Convenience and Necessity (CPCN) is a type of regulatory compliance certificate intended to demonstrate public need and authorize infrastructure projects.
- Siting authority varies by state. Some distribute authority over multiple agencies, while others are more centralized and coordinated.
- If centralized, government authorities primarily responsible for siting may include:
 - Public Utility Commissions (PUCs)
 - State Energy Offices
 - State Natural Resources Agencies
 - Independent State Siting Councils
 - State Siting Boards organized under an existing agency

State CPCN Requirements

CPCN Required With Min Voltage Threshold


- **CPCN Required Without Min Voltage Threshold**
- CPCN Not Required/Requirements Unclear

ROW data is inconsistent across states and unavailable for energy infrastructure planning

- Transportation ROW data is managed independently by state DOTs.
- Transmission is already present within highway ROW – but exactly how many structures and miles is unknown.
- Colorado DOT publishes high-quality, publicly • accessible ROW data, making analysis possible.
- Colorado has 23,000 miles of transmission; 234 miles (1%) are located in Colorado DOT ROW.

Highway type	Miles of co-located transmission	Number of co-located segments
Interstates & other freeways	49	61
Other principal and minor arterials	67	91

This transmission line has 68% of its length within a highway ROW

T

Identifying recent longitudinal projects within the transportation ROW (2000-2025)

States with One or More Identified Project

Voltage Level

All projects are 115 kV or greater.

Orientation

8 projects are underground and 7 are overhead in the transportation ROW.

Commissioned

NEPA Cancelled/ Proposed Approved Suspended 3

Key Insights from 15 Projects Identified

HVDC

5 projects are highvoltage direct current (HVDC).

Project Financing

6 projects are merchant and 9 are non-merchant.

Status of Projects

Engineering

codes and regulations

A

Accessibility of transmission corridors includes easements on private property, considerations for sizable equipment, and safety aspects for road crossings

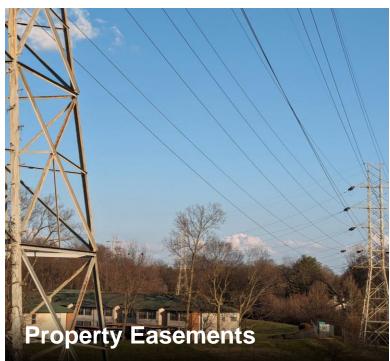
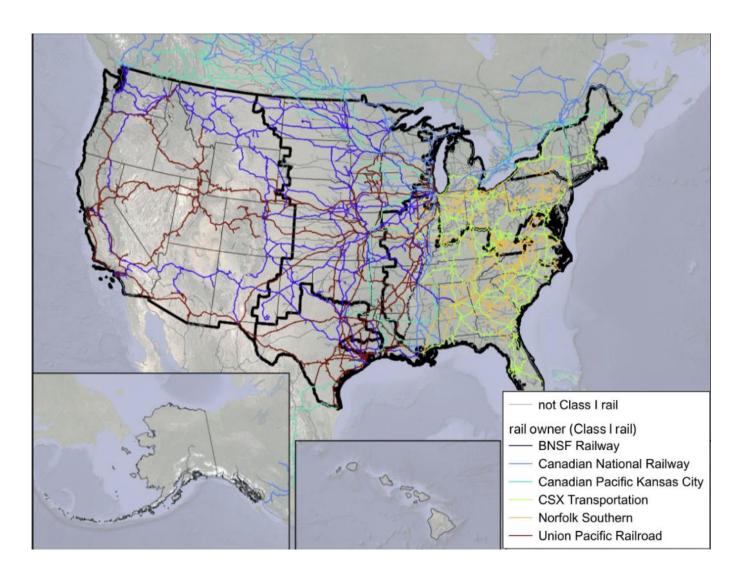


Image Credits: Transmission with Rail: So

Transmission with Rail: Scott Gilman, Colorado Vegetation Clearances: Irena Netik, Washington Crossings: Scott Gilman, Colorado Property Easements: Rebecca O'Neil, Kentucky

Rail


Each rail owner requires license agreements and has independent policies and procedures

Class I railroads have national reach for transmission opportunities

- Freight railroads in the U.S. are designated according to their annual operating revenues as Class I, II, or III.
- Approximately **two-thirds** of the nation's rail network (~92,000 route miles) is owned by six Class I freight railroad companies.
- Class II and III make up 600 short line railroads and include private, public, and quasi-public operators and owners.
- Railroad property rights often come from easements, license agreements, and/or adverse possession.

Above: Class I rail owners related to NERC regions. Note that all bulk electric reliability regions have Class I rail opportunities.

Volpe Amy Plovnick amy.plovnick@dot.gov

Scott Gilman scott.gilman@dot.gov

PNNL Rebecca O'Neil rebecca.oneil@pnnl.gov

Jennifer Yoshimura jennifer.yoshimura@pnnl.gov

T

-

T

-

T

Thank you

