

Fighting the 3 Hazards in rebreather diving

Assoc. Prof. Dr. Arne Sieber

Closed Circuit Rebreather

O2 + Diluent

Exhaled gas incl. CO2

CCR

3x pO2 sensors (tank pressures)

System: Diver + CCR

- tank pressure values
- depth, dive time
- decompression obligation
- diver can switch pO2 setpoints or adjust

3 Hs

Hypercapnia

- Too high CO2 levels in the inhaled gas
 - Scrubber is exhausted
 - Scrubber bypass
 - Temperature too cold
 - Workload too high, RMV too high
 - Too deep
- Pendulum breathing
 - Problem with the flapper valves in the mouthpiece
- Too high work of breathing
 - Too high gas density
 - Too deep
 - Rebreather with too high WOB
 - Rebreather with too high hydrostatic imbalance
 - Too high physical activity
 - Stress factors, ergonomics, environment, etc.

Hypoxic: pO2 too low

- Incorrect O2 sensing
 - Failure of the sensors
 - Failure of the electronics or software
 - Incorrect calibration
- No O2 supply
 - Tank is empty or not open
 - O2 injection malfunction

Hyperoxic: pO2 too high

- Failure of the O2 sensing system
- O2 injection stuck open
- Wrong diluent gas
- Too fast descent

-> Decompression schedule is based on pO2 !

3 Hazards

Hypercapnia

- Too high CO2 levels in the inhaled gas
 - Scrubber is exhausted
 - Scrubber bypass
 - Temperature too cold
 - Workload too high, RMV too high
 - Too deep
- Pendulum breathing
 - Problem with the flapper valves in the mouthpiece
- Too high work of breathing
 - Too high gas density
 - Too deep
 - Rebreather with too high WOB
 - Rebreather with too high hydrostatic imbalance
 - Too high physical activity
 - Stress factors, ergonomics, environment, etc.

OXYGEN SCIENTIFIC

Hypoxic: pO2 too low

- Incorrect O2 sensing
 - Failure of the sensors
 - Failure of the electronics or software
 - Incorrect calibration
- No O2 supply
 - Tank is empty or not open
 - O2 injection malfunction

Hyperoxic: pO2 too high

- Failure of the O2 sensing system
- O2 injection stuck open
- Wrong diluent gas
- Too fast descent

-> Decompression schedule is based on pO2 !

Ergonomics

Measures to decrease workload and stress

- More compact and streamlined systems
- Easy to understand and intuitive user interfaces
- Less clutter wireless systems
- Ergonomic CCR design, for instance alternatives to bulky bail out valve mouthpieces

Streamlined Systems

Ergonomic BOV

Holistic concept

Sensors

Rebreather monitoring

- Reliable O2 sensing system
- Reliable CO2 sensing
- Failsafe system design
- Diver monitoring
 - Heart Rate
 - RMV, breathing rate, breathing volumes
 - SO2
 - EtCO2
- System diver / rebreather monitoring
 - Position of the diver in the water
 - Counterlung volumes
 - Breathing pressures
 - External work of breathing
 - Hydrostatic Imbalance

OXYGEN SCIENTIFIC

Intelligent systems

- Data Processing
- Validation of signals
- System modelling
- Signal fusion, Al,...

User Interface

All OK

Switch to bailout Open O2 tank Surface now Calm down – reduce workload

Easy-to-understand messages to the diver on a screen or HUD, ideally with easy-to-understand symbols

EtCO2 monitoring

- EU Marie Curie ITN Liefeloop, R&D of gas sensors for rebreathers
- First EtCO2 monitoring in a mouthpiece
- Academic result, no further development due to high fabrication cost

Diver monitoring

- ECG, SO2 (ONRG project, 2012-2014)
- Monitoring of breath-hold divers
 - SO2
 - Involuntary breathing movements
 - NIRs / Cerebral oxygenation
 - Body position

Future CCR – Key R&D goals

- Ergonomic solutions less workload/stress for the diver
- Sensors
 - Reliable gas sensing
 - Physiological parameters of the diver
 - System-related parameters, like WOB, hydrostatic imbalance, position in the water
- Sensor data processing
 - Sensor signal fusion, Neural Networks, AI
 - Intuitive/easy-to-understand interfaces

Final goal: More efficient and safer diving