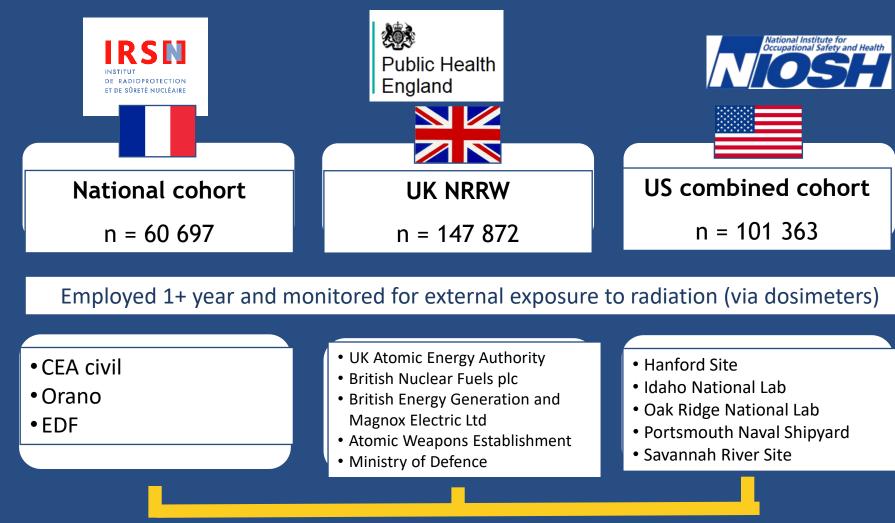
Nuclear worker studies that inform low dose risk assessment: Example of the International Nuclear Workers Study (INWORKS)

Nuclear & Radiation Studies Board May 2025

David B. Richardson, University of California, Irvine

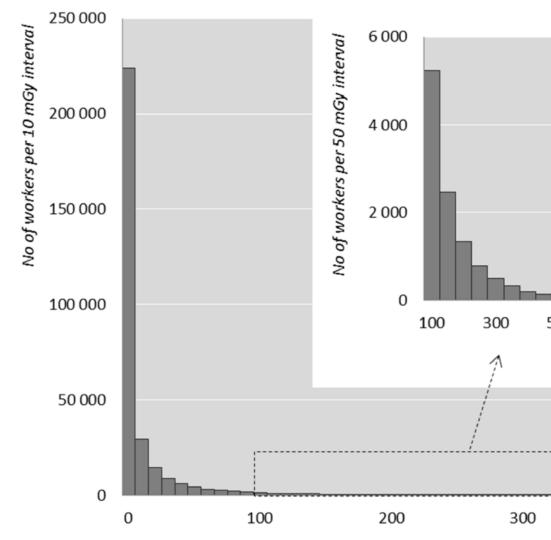

Recent cohort studies: occupational radiation dose and solid cancer

Country, Population (Author, Year)	Mean dose (mGy)	No. cancers
Australia, nuclear workers (Habib, et al. 2005)	6.1	17
US, Navy nuclear submariners (Friedman-Jimenez et al. 2022)	5.7	492
S Korea, NPP workers (Jeong, Jin et al. 2010)	19.7	96
France, Uranium process workers (Zhivin et al. 2016)	0.8	406
S Korea, diagnostic medical radiation workers (Lee et al. 2021)	7.2	3,220
Japan, nuclear workers (Furuta, et al. 2022)	11.0	7,929
Spain, nuclear workers (Cardis, Vrijheid et al. 2007)	25.5	25
China diagnostic x-ray workers (Sun, et al. 2016)	40.6	1,643
US, medical radiologic workers (Boice, et al. 2022)	14.6	3,191
Chornobyl clean-up workers, Russia (Kashcheev, et al. 2015)	132.0	2,442
INWORKS (Richardson et al. 2023)	20.9	28,089
Germany, Uranium process, Germany (Kreuzer, et al. 2015)	26.0	434
Mayak workers, Russia (Sokolnikov, et al. 2015,. 2017)	354.0	1,825
Canada, Port Hope uranium process (Zablotska, et al. 2013)	134.0	225
US, NPP workers (Boice, et al. 2022)	43.7	8,445
US, Rocketdyne workers (Boice, et al. 2011)	13.5	651
Sweden, nuclear workers (Cardis, et al. 2007)	6.1	190
Belgium, nuclear workers (Engels, et al. 2005)	26.6	87
Germany, NPP workers (Merzenich, et al. 2014)	29.5	115
Canada, nuclear workers (Zablotska, et al. 2014)	21.6	324

ERR Gy⁻¹ (95% CI) 13.40 (-6.0, 119) 5.20 (-3, 18) 2.06 (-1.91, 9) 1.60 (-4.3, 7.5) 1.50 (-2.0, 5.1) 1.22 (0.24, 2.26) 1.02 (-11.9, 13.9) 0.87 (0.48, 1.45) 0.70 (-0.1, 1.5) 0.58 (0.002, 1.25) 0.52 (0.27, 0.77) 0.26 (-2.47, 2.99) 0.16 (0.07, 0.26) 0.12 (-0.74, 0.98) 0.10 (-0.3, 0.5) -0.2 (-1.8, 1.7) -0.58 (-7.65, 6.49) -0.59 (-7.42, 6.24) -1.00 (-4, 1) -1.20 (-4.79, 2.39)

INTERNATIONAL AGENCY FOR RESEARCH ON CAACER. WORLD HEALTH ORIGANIZATION **Combined Analyses of Cancer Mortality** Among Nuclear Industry Workers in Canada, the United Kingdom and the United States of America E. Gardia, E.S. Gilbert, L. Garpenter, G. Hewe, I. Karp. J. Fin. L. Salmon, G. Cowper, B.K. Armstrong, V. Beral, A. Douglas, S.A. Fry, J. Kaldor, G. Lavel, P.G. Smith, G. Voelo and L. Wiggs. LARC Technical Report No. 25 Lyon, 1995.

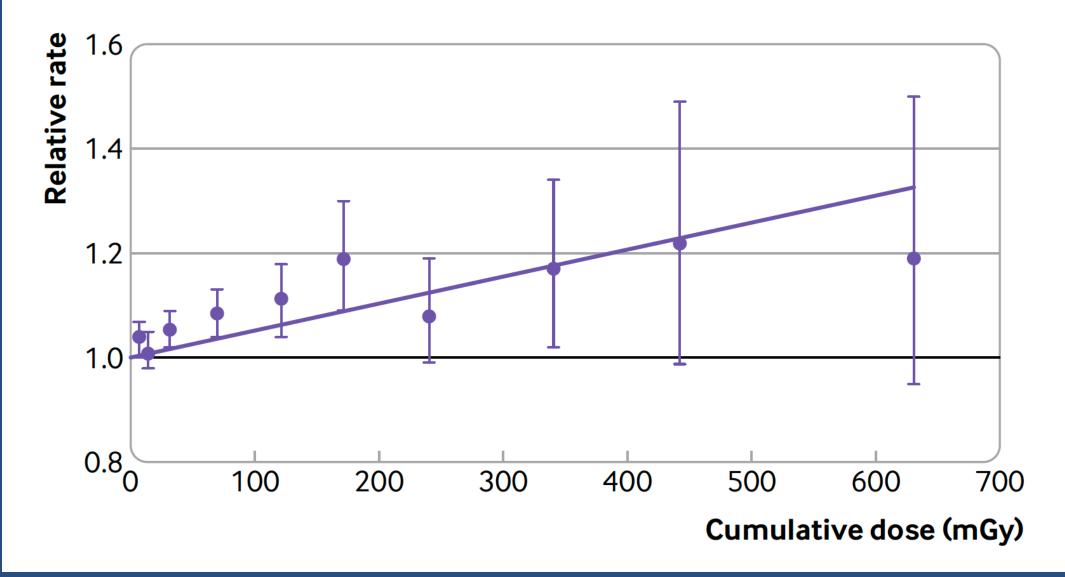
309 932 workers



Characteristics of INWORKS cohorts: 1944-2016

Calendar years of follow-up	1944-2016
Workers	309,932
Person-years (millions)	10.72
males	9.24
females	1.48
Deaths (all causes)	103,553
All cancer	31,009
Solid cancer	28,089
Solid cancer other than lung	19,823
Average duration of follow-up (years)	34.6
Average age at end of follow-up (years)	65.9
Average cumulative dose (mGy)	20.9

Distribution of cumulative red bone marrow doses



500	700	900	1100
			Dose (mGy)
			Dose (moy)
	400)	500
			Dose (mGy

Relative rate of solid cancer mortality by categories of cumulative dose, and fitted line. INWORKS, 1944-2016

ERR per Gy = 0.5290%CI [0.27 - 0.77]

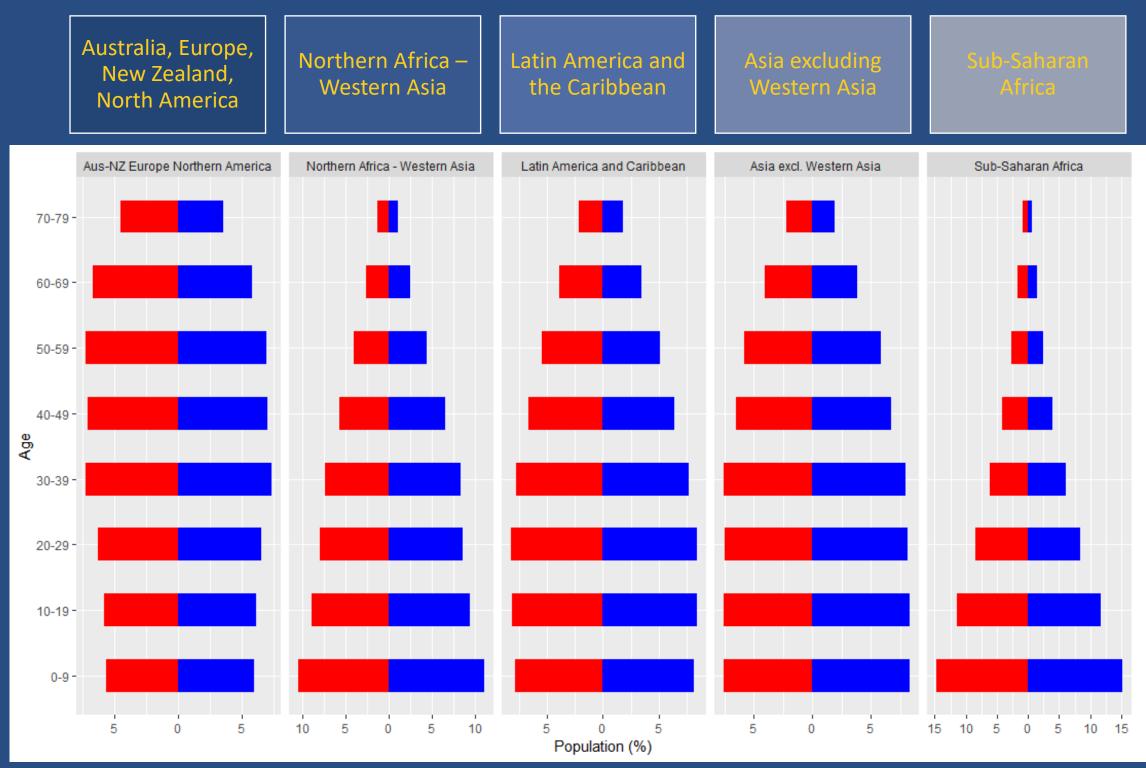
Poisson regression stratified by country, age, sex, birth cohort, socioeconomic status, duration employed, neutron monitoring. 10 year lag assumption.

SOME MAJOR STUDIES: ASSOCIATIONS BY CAUSE

	Leukemia excl CLL ERR per Gy (95% Cl) [cases]	Solid cancer ERR per Gy (95% CI) [cases]	Ischer
INWORKS (Richardson et al. 2023; Leuraud et al. 2015; Gillies et al. 2016)	2.96 (1.17 to 5.21) ^a [531]	0.52 (0.27 to 0.77) ^a [28,089]	((
Mayak workers (Preston, et al. 2017; Azizova 2010)	0.11 (-0.20 to 0.50) [90]	0.16* (0.07 to 0.26) [1,825]	(-
NPP workers (Boice, et al. 2022)	1.50 (-0.01 to 3.10) ^a [311]	0.10 (-0.30 to 0.50) [8,445]	(-

mic heart disease ERR per Gy (95% CI) [cases] 0.17 (0.00 to 0.36)^a [17,279] 0.07 (-0.02 to 0.15) [577] -0.10 -0.60 to 0.40) [5,410]

UNSCEAR Report on Cancer Epi


What we have is:

Model for (Relative) Rate, expressed as events per person-year, which varies as a function of age, sex, time since exposure, dose

What we want is:

Risk - the probability that a disease will develop in a person within a specified time period, expressed as the number of events divided by size of the population at risk

Target populations

Occupational Exposure Scenario

UNSCEAR 2019 : Cumulative risk of all solid cancers mortality for United States workers exposed to a total dose of 100 mGy of low-LET radiation delivered from ages 30 to 45.

Illustrative values for estimated excess solid cancer deaths per 10,000 workers by age 65 years

Excess Relative Rate model LSS - 6.4 (4.0, 9.8) per 10,000 workers INWORKS - 11 (3.1, 19.3) per 10,000 workers

Excess Absolute Rate model LSS - 12 (8.1, 18) per 10,000 workers INWORKS - 11 (-1.1, 25) per 10,000 workers

Conclusions

Over the last 20 years there have been many low dose studies.

- New studies yield results with greater precision than earlier studies.
- Positive associations reported between protracted low dose external exposures and solid cancer and leukemia mortality

Risk assessments

- Assess coherence Life Span Study and nuclear worker study findings
- Examine influence of target populations
- Describe importance of model and transportability assumptions