

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation (DNN)

Status of U.S. and International Production of Molybdenum-99 without Highly Enriched Uranium

Background on Molybdenum-99 (Mo-99)

Vital medical isotope relied on for over 40,000 U.S. procedures per day

Historically produced using highly enriched uranium (HEU)

Impossible to stockpile

U.S. uses 50% of global supply but relies on imports

Global supply chain subject to shortages

Advantages of Domestic Mo-99 Production

More efficient – less material lost to radioactive decay

Lower risk of transportation-related disruptions

More resilient, due to diverse production technologies

Supports U.S. manufacturing and technology leadership

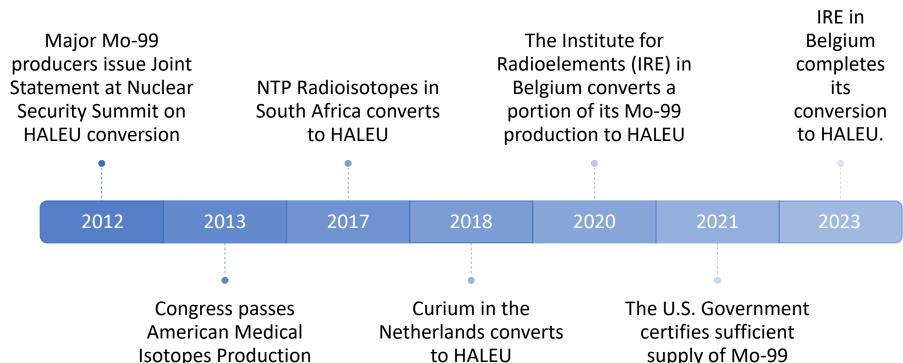
Goals of NNSA Mo-99 Program

International Efforts

Help global Mo-99 production facilities convert to high-assay low-enriched uranium (HALEU) targets

Reliable supplies of Mo-99 produced without HEU

U.S. Domestic Efforts


Support the establishment of commercial Mo-99 production in the United States without highly enriched uranium (HEU)

Completing Conversions from HEU to HALEU

Thanks to NNSA assistance, all four major Mo-99 producers now use HALEU targets

The Australian Nuclear Science and Technology Organisation has always used HALEU

Act

The U.S. Government certifies sufficient supply of Mo-99 produced without HEU and ends U.S. exports of HEU for medical isotope production

Progress Towards Domestic Production

- Significant progress on Mo-99 production infrastructure:
 - NorthStar production line at Missouri University Research Reactor operated from 2018-2023
 - NorthStar accelerator facility reached hot commissioning
 - SHINE accelerator facility is 75% complete
- Major challenges with private financing and commercialization
- NNSA remains committed to supporting domestic Mo-99 production
 - Congress provided \$50M in new funding in FY 2024 budget
 - NNSA working with other agencies on commercialization challenges

Outlook for Mo-99 Supply

Positive Factors

Negative Factors

Conversion to HALEU

Supply chain better coordinated and somewhat more diversified

New production projects on the horizon

Continued U.S. reliance on imports

Supply chain relies on aging nuclear reactors

Market-based pricing not yet achieved

Key Take-Aways

- 1. With NNSA's help, the global Mo-99 supply chain has successfully transitioned from HEU to HALEU, marking a major nuclear nonproliferation milestone.
- 2. U.S. companies have made significant progress in establishing Mo-99 production infrastructure but have experienced major challenges with financing and commercialization.
- 3. Domestic Mo-99 production remains a very important goal, especially given risks in the global Mo-99 supply chain.