Results of the Multi-Mission Metagenomics Technology **Development Workshop for Modernizing Planetary Protection Policy**

Presenter: Stefan Green

Rush University, Chicago, IL

Workshop Chair

Stefan Green

RUSH

Workshop Co-Chair

Scott Tighe

Workshop Co-Chair

Tamas Torok

Committee on Planetary Protection 2023 Fall Meeting October 20, 2023

Sciences Engineering Medicine

Disclaimer

 NASA Office of Planetary Protection funded JPL to run a workshop addressing the need for molecular approaches to spacecraft bioburden assessment

Workshop Participants

Independent science review

- Stefan Green, Rush University (Chair)
- Scott Tighe, UVM (co-Chair)
- Tamas Torok, LBNL (co-Chair)

- Panelists:
 - Scott Jackson, NIST (presenter)
 - Sunny Jiang, UC Irvine (presenter)
 - Emiley Eloe-Fadrosh, JGI
 - Jonathan Allen, LLNL
 - Shawn Levy, Hudson Alpha
 - Stuart Levine, MIT
 - Lynn Schriml, U. Maryland
 - Kelley Thomas, UNH

NASA Presenters

- Nick Benardini, PPO, NASA
- Julie Robinson, HEOMD, NASA
- Sarah Wallace, JSC
- Aaron Regberg, JSC
- Jason Wood, former JPL
- Lisa Guan, JPL
- Nitin Singh, JPL
- Kasthuri Venkateswaran, JPL

Publication

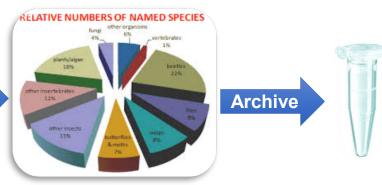
 Green SJ, Torok T, Allen JE, Eloe-Fadrosh E, Jackson S, Jiang SC, Levine S, Levy S, Schriml LM, Thomas WK, Wood JM, and Tighe S. 2023. <u>Metagenomic Methods for Meeting NASA's Planetary</u> <u>Protection Policy Requirements on Future Missions – a Workshop</u> <u>Report</u>. *Astrobiology* 23(8):897-907.

Motivation for New Methods for Bioburden Assessment

- COSPAR has formulated an international standard Planetary Protection Policy to protect against interplanetary biological and organic contamination
- NASA missions with potential biological contamination currently use the NASA Spore Assay (NSA)
- Space Studies Board (SSB) recommendations:
 - 1992/2006: Adapt molecular assays for bioburden and diversity measurement
 - 2019: Require collection of phylogenetic data to assess diversity of microbes in assembly, test, and launch operations (ATLO) environments and on Mars spacecraft
- In-house 'genetic inventory' DNA molecular assays have been conducted for certain NASA missions on a research basis.
- State-of-the-art techniques are widely used by federal agencies, academia, and industry, but need to be validated for spacecraft-associated surfaces

Current Approach for Bioburden Assessment

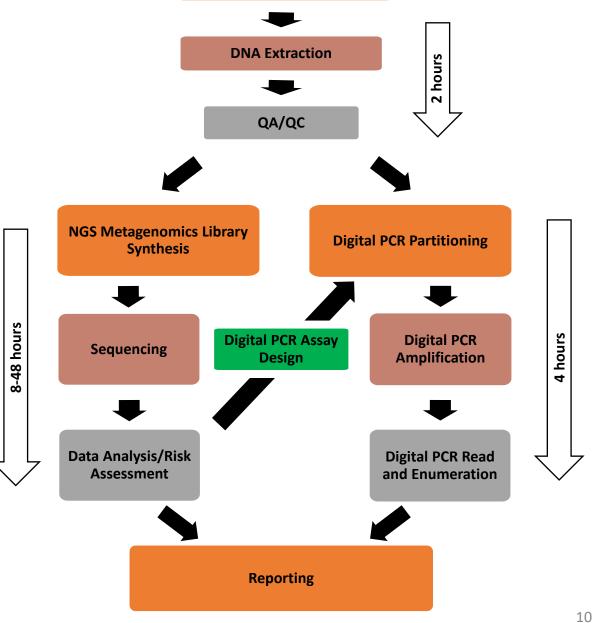
- NASA Spore Assay (NSA)
 - Labor-intensive and time-consuming (3-day incubation)
 - Targets only aerobic, bacterial endospore-forming taxa
 - Such organisms represent fewer than 0.1% of microbiota present on spacecraft surfaces
 - No correlation between NSA counts and total microbiota
 - Does not capture all PP-relevant taxa
 - No taxonomic or functional characterization of isolates


Workshop Objectives and Goals

- Recommend a molecular verification process to <u>supplement</u> the NSA bioburden assessment
 - Rapid quantification of biological contaminants
 - Taxonomic and functional characterization of contaminants from molecular data
 - Understanding the function and risk profile of contaminants
- Evaluate molecular methods for assessing spacecraft bioburden
- Identify knowledge gaps and needed innovations

Current NASA Standard Process

- New Technology
 - Transforms process
 - Faster enumeration and higher resolution


Expected Key Benefits

- 1. <u>Lower Risk</u> risk-based decision making for organism types and capabilities.
- 2. <u>Higher Resolution</u> >99% fold increase in diversity over NSA.
- 3. Faster Aim is to reduce TAT from 72 h to ~6 h.
- 4. <u>Cost / Schedule Savings</u> reduction in TAT and tailored microbial reduction.

Workshop Findings

- Objectives are threefold:
 - Rapid results
 - Quantitative results
 - High information content results
- Currently, no single method can achieve all three objectives for low biomass
- Workshop panel recommended a hybrid model of digital PCR and shotgun metagenome sequencing to achieve all objectives
- Bioinformatics serves as an anchor linking metagenomics and digital PCR
- Culturomics is essential for developing appropriate reference databases

Proposed Hybrid Molecular Approach

Sample Collection

Technology Gaps

- Nucleic acid-free sampling devices and materials
- Nucleic acid-free reagents and consumables
- Mitigation strategies effective for low biomass samples
- Ultra-low nucleic acid detection (e.g., 10 pg challenge)
- One-click bioinformatics solutions for metagenomic sequence data
- Hybrid risk models combining metagenomic and digital PCR data
- Live/dead evaluation methods for low biomass samples
- Ultra-low bioburden whole cell reference standards

Standardizing Molecular Assessment of Spacecraft Biological Contamination

Sample Collection

- Sample device standardization for large and small surface areas
- Sample collection from low and high biomass surfaces

Sample Processing and Sequencing

- Nucleic acid extraction standard process
- Viable organism enumeration standard process
- Optimization of sequencing reactions pre-processing, interim processing, and final benchmarks

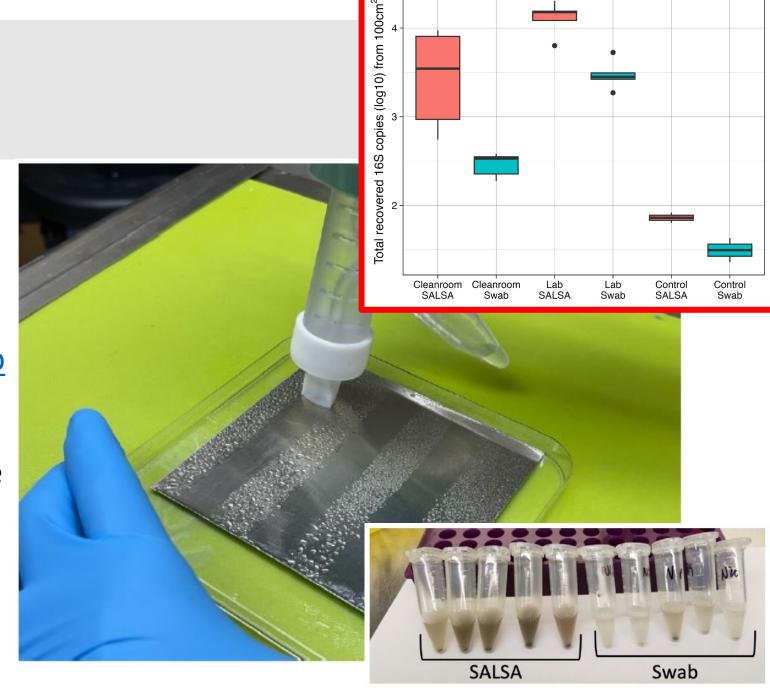
Bioinformatic Analysis

- Broadest spectrum of organisms identified with appropriate analytics
- Bioinformatic pipeline standardization
- Populate and standardize database with PP-relevant organisms

Establishing Relevant Organism Assessments

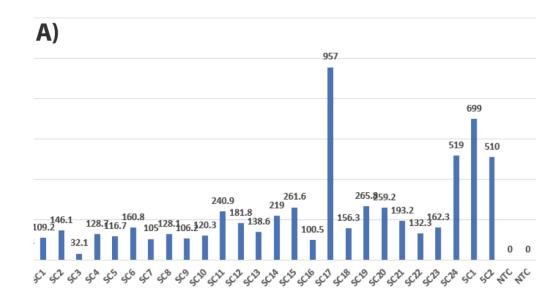
- Enhanced understanding of microbes in extreme environments and tolerance to sterilization modalities
- Develop databases of mission-specific microbial traits and biochemical capabilities
- Rapid assessment of PP-relevant organisms
- Leverage molecular data to culture PP-relevant organisms
- Establishment of thresholds and limits of detection for rapid and classical assessments

Recommendations and Next Steps


- Optimization of semi-quantitative metagenomics for ultra-low biomass microbial characterization
- Validation of targeted digital PCR for quantitative assessment of spacecraft surfaces
- Encourage NASA to
 - continue regular workshops to evaluate technology development
 - leverage technology roadmaps to support development in the following areas:
 - reagent and instrumentation development
 - cultivation and bioinformatics research
- COSPAR to host international workshops to coordinate technology development between agencies

Developments

 Squeegee-Aspirator for Large Sampling Area (SALSA) surface sampling device (Simpson et al. 2023 – JBT 34(3):


https://jbt.pubpub.org/pub/3rzb85v3/release/2)

 Challenge: Need to validate "metagenomics" methods for ~pg DNA samples and no funding available

Developments

- Qiagen Ultra-clean reagents
 - <u>UCP HiFidelity PCR Kit</u>
- BioSkryb ResolveDNA Microbiome whole genome amplification
 - ResolveDNA Microbiome (Alpha) -BioSkryb Genomics
- DNA-free reagents from Sigma
 - DNA-free PBS, Tris, polymerases, MetaPolyzyme

Questions

Contact

- Stefan Green, <u>Stefan_Green@rush.edu</u>
- Scott Tighe, Scott.Tighe@uvm.edu
- Tamas Torok, ttorok@lbl.gov