Protocols for mCDR Monitoring, Reporting, and Verification

Jing He, Ph.D. Carbon Removal Scientist, Isometric

NASEM mCDR Standing Committee 15th September 2025

What is a registry?

A public ledger that tracks credit:

- Issuance
- Ownership
- Retirement

Where 1 credit represents 1 tCO₂e removed that has been **verified**

Credit timeline

H Harvard Management Company retired 36.932 credits as part of a 140 credit retirement

29 Jul 2025

LATEST

Charm Industrial delivered 140 credits to Harvard Management Company

29 Jul 2025

74

Isometric issued 1,002.95 credits to Charm Industrial

→ 982.882 allocated to Charm Industrial

⇒ 20.068 allocated to Charm Industrial Buffer Pool

How is a credit verified?

М

Monitoring

The ability to accurately measure, monitor and model baseline and CO₂ removal activities to quantify net CDR.

R

Reporting

The process of reliably and transparently providing data related to CO_2 removals in a format that is accessible and verifiable.

V

Verification

The auditing of methodologies, project data and removal claims by independent third parties, demonstrating scientific rigor and accuracy in removals.

Standard setting: MRV protocol development

v1.0 | Certified

Electrolytic Seawater Mineralization

This protocol outlines the MRV and best practices for high-quality carbon removal in electrolytic seawater mineralization.

v1.0 | Pending certification

Direct Ocean Capture and Storage

This protocol outlines the MRV and best practices for high-quality carbon removal of CO2 from the atmosphere via Direct Ocean Capture and Storage.

v1.0 | Certified

Ocean Alkalinity Enhancement from Coastal Outfalls

This protocol outlines the MRV and best practices for high-quality carbon removal in ocean alkalinity enhancement.

v1.0 | Certified

Wastewater Alkalinity Enhancement

This protocol outlines the MRV and best practices for high quality carbon removal in wastewater alkalinity enhancement projects.

v1.0 | Certified

River Alkalinity Enhancement

This protocol outlines the MRV and best practices for high-quality carbon removal in river alkalinity enhancement.

Environmental and social safeguarding

Net CDR quantification approach

The amount of credits we generate for a given removal activity

The amount of carbon dioxide which is durably stored as a result of the project

The amount of carbon dioxide which would have been durably stored without the project existing

The amount of carbon dioxide emissions associated with the project

$$CO_2e_{Removal} = \Delta CO_2e_{AirSeaFlux} - CO_2e_{Emissions}$$

Quantification of air-sea CO₂ flux

Step 1: Outfall measurements

Step 2: Alkalinity upscaling and losses

Step 3: Air-sea gas exchange

isometric.com

Project emissions

Feedstock production + transport

Site operations + monitoring

Personnel transportation + accommodation

Project establishment + closure

Standardized emissions-accounting modules:

v1.2 | Certified

Energy Use Accounting

This module describes how energy-related emissions must be calculated so that they can be subtracted in the net CO_2e removal calculation.

v1.1 | Certified

Transportation Emissions Accounting

This module describes how transportation-related emissions must be calculated so that they can be subtracted in the net CO_2 e removal calculation.

v1.0 | Certified

Embodied Emissions Accounting

This module describes how embodied emissions related to equipment and material manufacture must be calculated so that they can be subtracted in the net CO_2e removal calculation.

Uncertainty quantification

Sequestration

Mass of feedstock dosed	±0.25%
Feedstock alkalinity content	±4.33%
Interannual variability in near-field model	±7.26%
Interannual variability in far-field model	±19.25%
Air-sea CO ₂ flux parameterization	±6.51%

Emissions

Feedstock production	±3.46%
Feedstock transport	±9.96%
Personnel transportation & accommodation	±7.35%
Project establishment	±6.25%
End-of-life	±5.62%
Operations and monitoring	±1.18%

Uncertainty quantification

MRV roadmap

Short term

Uncover real-world MRV challenges from initial deployments and verification

Evolving protocols based on those learnings

Medium term

- Project level MRV enables research + experimentation
- Protocols begin to stabilize for more mature pathways
- Suppliers, registries and verifiers consistently improving efficiency of what is required

Long term

- Protocols and tooling are standardized and regularly updated based on new research.
- → Verification is accessible, efficient, automated.

2 years 5 years 7 years

continually sharing experiences with broader community to drive science & tech innovation

Summary

- 1. Advancements in protocol development since the 2022 NASEM Report
 - a. Lays foundation for transparent data reporting and verification
 - Puts mCDR on a level playing field with terrestrial CDR with standardized emissions accounting
- 2. Current protocols are V1.0 will continue to evolve based on new research
 - a. MRV today will be very different from MRV at scale

To learn more

- <u>registry.isometric.com</u> → read protocols & explore removal data from projects
- <u>isometric.com/science-network-members</u> → stay up to date on protocol developments and consultations