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Motivation for Utilizing Non-Probability Samples

Non-probability samples are an increasing part of life for
the survey analyst.

Non-response.
Sampling frame coverage.
Increasing cost.
Detailed outcomes of interest not present in probability
samples.
Larger sample size than equivalent probability sample,
especially in small domains.

Offers possibility of improved inference if increase in
precision is not overwhelmed by bias from the
non-probability sample.
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Framework for Nonprobability Sample Inference

Consider the joint density of a population vector of analysis
variable Y = (Y1,Y2, . . . ,YN) and of 0-1 indicator variables
δs = (δ1,δ2, . . . ,δN) for a sample s:

f (Y,δs|X;Θ,Φ) = f (Y|X;Θ)f (δs|Y,X;Φ)

where X is an N ×p matrix of covariates that govern Y through
unknown parameter Θ, and unknown parameter Φ governs f (δs
through both Y and X (Smith 1983; Rubin 1976; Little 1982).

Probability sampling: f (δs|Y,X;Φ) = f (δs|X).
Non-probability sampling: δs can depend on Y and/or Φ in
addition to X.
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Framework for Nonprobability Sample Inference

1. Quasi-randomization: model f (δs|Y,X;Φ).
Ideally, the probability of being in the sample is not NMAR
and a model can be found for f (δs|X;Φ).

2. Superpopulation: model f (Y|X;Θ).
Calibration a broad special case where model-based
estimates are adjusted to known or estimated quantities
outside of the non-probability sample.

3. Doubly robust models combine 1. and 2.
Extends the idea of augmented inverse propensity
weighting: combines predicted means from models for
probability sample with QR-weighted residuals from
non-probability sample.
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Key Assumptions

Positivity: P(δ B
i = 1 | xi)> 0 for all xi .

Quasi-Randomization
Ignorability: Yi ⊥ δ B

i | xi .
Independence: δ R

i ⊥ δ B
i | xi .

Superpopulation
Know f (Yi | xi).
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Quasi-Randomization
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Quasi-randomization: Generating Pseudo-Weights

Elliott and Davis (2005) developed method to account for
non-response bias and frame coverage.

Extend to estimate over- and under-representation of
sample elements in the non-probability sample based on
covariates available in both samples.

By repeated application of Bayes’ Rule we can estimate
the probability that a nonprobability case would have been
sampled by

π
B
i = P(δ B

i = 1 | xi = xo) =
P(xi = xo | δ B

i = 1)P(δ B
i = 1)

P(xi = xo)

=
P(xi = xo | δ B

i = 1)P(δ B
i = 1)P(δ R

i = 1 | xi = xo)

P(δ R
i = 1)P(xi = xo | δ R

i = 1)

∝
P(xi = xo | δ B

i = 1)P(δ R
i = 1 | xi = xo)

P(xi = xo | δ R
i = 1)

.
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Generating Pseudo-Weights

Estimating P(xi = xo | δ B
i = 1) and P(xi = xo | δ R

i = 1) can
be difficult for a general joint distribution of covariates x.
Extensions of discriminant analysis provide a way around
this problem. Let Zi be an indicator for whether the subject
is in the nonprobability sample.
If sampling fractions are small

P(δ R
i = 1,δ B

i = 0)≈ P(δ R
i = 1) and P(δ R

i = 0,δ B
i = 1)≈ P(δ B

i = 1) so

P(xi |Zi = 0) = P(xi |δ R
i = 1,δ B

i = 0)≈ P(xi |δ R
i = 1) and

P(xi |Zi = 1) = P(xi |δ R
i = 0,δ B

i = 1)≈ P(xi |δ B
i = 1).

Then
P(xi = xo | δ B

i = 1)
P(xi = xo | δ R

i = 1)
≈ P(xi = xo | Zi = 1)

P(xi = xo | Zi = 0)

=
P(Zi = 1 | xi = xo)P(xi = xo)/P(Zi = 1)
P(Zi = 0 | xi = xo)P(xi = xo)/P(Zi = 0)

∝
P(Zi = 1 | xi = xo)

P(Zi = 0 | xi = xo)
.
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Generating Pseudo-Weights

Resulting pseudo-weight is given by

wi = 1/π̂
B
i = 1/P̂(δ B

i = 1 | xi = xo) ∝

1/P̂(δ R
i = 1 | xi = xo)

P̂(Zi = 0 | xi = xo)

P̂(Zi = 1 | xi = xo)
.

If the probability sample weight as a function of xo is
known, 1/P̂(δ R

i = 1 | xi = xo) can be replaced with known
1/πR

i .
Otherwise P̂(δ R

i = 1 | xi = xo) can be estimated using, e.g.,
beta regression (Ferrari and Cribari 2004).

Obtain P̂(Zi = z | xi = xo) via logistic regression.
LASSO (Tibshirani 1996).
Super learner algorithms (Van der Laan et al. 2007).
Bayesian additive regression trees (Chipman et al. 2010).
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Inference Under Quasi-Randomization

E(ŷQR) = E(E(ŷQR | π̂B))

V (ŷQR) = E(V (ŷQR | π̂B))+E(V (ŷQR | π̂B))

Compute using Rubin’s MI combining rule (Rafei et al.
2020): for each draw of (πB)(b) from BART compute

ŷ
(b)
QR =

∑i∈SB
yi ((π

B
i )

(b))−1

∑i∈SB
((πB

i )(b))−1 and

V̂ (ŷ
(b)
QR) =

N+1
N

∑i∈SB
(yi−y (b)

QR)
2((πB

i )(b))−1

(∑i∈SB
((πB

i )(b))−1))2

Then point and variance estimates are given by

ŷQR = B−1
∑
b

y (b)
QR

ˆV (yQR) = B−1
∑
b

ˆV (y
(b))
QR +

B+1
B

(B−1)−1
∑
b
(y (b)

QR − ŷQR)
2
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Simulation Study

Generate population of 100,000 starting with design
variables D and common covariates X :

D1
D2
X1
X2

∼ N




0
1
0
1

 ,


1 -ρ/2 ρ -ρ/2

-ρ/2 1 -ρ/2 ρ

ρ -ρ/2 1 -ρ/2
-ρ/2 ρ -ρ/2 1




Generate outcome given covariates

Yi | xi ∼ N(−2+x1i −2x2i +3x1ix2i ,1)

Selection probabilities:

P(δ R
i = 1 | di) =

e−1−0.5d2
1i−d2i

4(1+e−1−0.5d2
1i−d2i )

P(δ B
i = 1 | di) =

e−3−x1i+x2i−0.5x1i x2i

2(1+e−3−x1i+x2i−0.5x1i x2i )
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Simulation Study

Given X Sample design is ignorable in SB, not in SR.
Assume δ R

i known only in the probability sample, δ B
i

unknown.
Probability sample nR = 200, non-probability sample
nB = 1,000.
Assume ρ = 0.8.
Consider alternatives:

Valliant and Dever (2018, p. 574) compute a weighted

logistic regression to estimate πB
i = exT

i β

1+exT
i β

by solving

U(β ) =
nB

∑
i=1

xi(1−π
B
i (xi ,β ))−

nR

∑
i=1

xiπ
B
i (xi ,β )/π

R
i

Chen et al. (2020) replace population term in
long-likelihood function with a Horvitz-Thompson type
estimator to solve

U(β ) =
nB

∑
i=1

xi −
nR

∑
i=1

xiπ
B
i (xi ,β )/π

R
i
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Simulation Study

Method Rel Bias RMSE 95% Cov SE Ratio
Unweighted 125.6 125.8 0 0.98
Weighted 0.2 7.8 93.9 0.96
Valliant-Dever -17.0 43.8 87.0 0.98
Chen et al. -26.0 57.9 88.1 1.05
Quasi-rand:
GLM -15.1 22.0 82.7 1.01
BART -3.9 14.6 96.9 1.04
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Estimation Under Doubly Robust Estimation

Can generate estimates of the selection probabilities πB
i as

in QR approach.
Now need estimates of ŷi based on available xi

Can generate parametrically, or using BART.
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Inference Under Doubly Robust Estimation

Selection probabilities πR known for nonprobability sample
(follows derivation in Chen, Li, and Wu 2020):

V̂ (ŷDR) = V̂1 + V̂2 − B̂(V̂2)

where V̂1 = V̂
(

∑i∈SA
(ŷi )(π

R
i )−1

∑i∈SA
(πR

i )−1

)
can be estimated by the

usual design based estimator of the mean of the predicted

values, V̂2 = V̂
(

∑i∈SB
(yi−ŷi )(π̂

B
i )−1

∑i∈SB
(π̂B

i )−1

)
can be estimated by

N̂−2
∑i∈SB

[
1−π̂B

i
(π̂B

i )2

]
(yi − ŷi)

2. B̂(V̂2) corrects for the bias of

V̂2 and can be ignored in small sampling fraction settings.
If selection probabilities πR unknown for nonprobability
sample can use Rubin’s combining rule from posterior
draws, using V̂ (ŷDR) for known selection probabilities πR

for the within-imputation estimates of variance.
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Inference Under Doubly Robust Estimation

Alternative Bayesian method: joint model

π
R
i | xi ,γ,φ ∼

BETA
(

φ(exp(γT xi)/(1+exp(γT xi))
)
,φ/(1+exp(γT xi))

Zi | xi ,β ∼ BER
(

exp(β T xi)/(1+exp(β T xi)
)

Yi | x∗
i θ ,σ ∼ N(θ T x∗

i ,σ
2)

Obtain draws from DR estimator after drawing above
parameters
Replace parametric regressions above with relevant BART
estimators and obtain draws from DR estimator.

17 / 28



Simulation Study

Generate population of A = 1,000 cluster starting with
design variables D and common covariates X : D

X0
X1

∼ N

 0
0
1

 ,

 1 -ρ/2 ρ

-ρ/2 1 -ρ/2
ρ -ρ/2 1


(Actually observe X2 = I(X0 > 0)).
Generate continuous outcome c and binary outcome b:
Y c

ai | xa,da ∼ N(1+0.5x2
1a +0.4x3

1a −0.3x2a −0.2x1ax2a −0.1di +ua,1)

Y b
ai | xa,da ∼ Ber

(
e−1+0.1x2

1a+0.2x3
1a−0.3x2a−0.4x1ax2a−0.5di+ua

1+e−1+0.1x2
1a+0.2x3

1a−0.3x2a−0.4x1ax2a−0.5di+ua

)
Selection probabilities for clusters:

P(δ R
a = 1 | da) =

eγ0+0.5da

1+eγ0+0.5da

P(δ B
a = 1 | xa) =

eγ1−0.1x1a+0.2x2
1a+0.3x2a−0.4x1ax2a

1+eγ1−0.1x1i+0.2x2
1i+0.3x2i−0.4x1i x2i
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Simulation Study

Given X Sample design is ignorable in SB, not in SR.
Assume δ R

i known only in the probability sample, δ B
i

unknown.
Probability sample nR = 100, non-probability sample
nB = 10,000, where γ0 and γ1 are chosen to meet these
values.
Assume ρ = 0.2.
Consider two alternatives for pseudo-weights:

PAPW: Situation where design weights are known for
non-probability sample
PAPP: Situation where design weights must be estimated
for non-probability sample

Also consider DR version of Chen et al. (2020) that uses
their QR weight estimator (IPSW)
Consider model misspecification by dropping interaction
terms.
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Simulation Study: Bias (a=continuous, b=binary)
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Simulation Study: Coverage/RMSE (a,c=continuous,
b,d=binary)
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Summary

This is not a complete survey of relevant literature:
McConville et al. (2017) and Chen et al. (2018, 2019)
consider alternative model assisted approaches that
develop calibration weights to model-based estimators.
The proposed methods work well in simulated settings but
are imperfect in practice
Lacking good covariates for assessing differences between
the probability and non-probability sample together with
selection being dependent on outcomes after adjustment
for covariates/interaction between mean models and
sample selection prevented full correction of selection bias.

There is a need for high quality probabilty samples to
collect relevant data elements for adjustment across the
medical, health, and social spectrum for use in adjustment.
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Open Issues and Areas for Future Research

Combining multiple data sources (e.g. administrative
records, probability sample, non-probability samples).
Extending these methods to allow for modeling rather than
just descriptive statistics: regression, small area
estimation, causal inference, etc.

QR approach can borrow from survey literature, but DR
approaches seem to require different thinking.

Developing methods for sensitivity analyses to deal with
failure of assumptions.

Some work has been done to address failure of ignorability
by borrowing from the pattern-mixture model work in the
missing data literature (Andridge 2024).
Extending this to the modeling setting is another open
issue.
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