

NIH Office of Research Facilities (ORF) Integrated Workplace Management System (IWMS)

For: Federal Facilities Council (FFC)

Standing Committee on Real Property Inventory, Planning, and Transactional Real Estate

By: Kylash Ramesh, National Institutes of Health (NIH) Date: 11/21/2024

Agenda

- 1. Speaker Bio & Background of NIH Office of Research Facilities
- 2. NIH ORF's Legacy Technology & Data Landscape

3. The ORF Integrated Workplace Management System (IWMS)

- Objectives
- Analysis of Alternatives (AoA)
- Acquisition & Funding Strategy
- Implementation Approach

4. Connecting NIH Facility Lifecycle Data

- Data Governance
- Space Data Management
- Asset & Parts Data Management
- Facility Services & Transactions
- Connecting Space, Assets, & Parts

5. Beyond IWMS: Geometric Digital Twins, Operational Technology & IoT

BACKGROUND

Speaker Bio

Name: Kylash Ramesh, PMP, LSSBB, FAC-COR III Email: kylash.ramesh@nih.gov

Title(s):

Program Manager, Integrated Workplace Management Chair, ORF IT Governance

Educational Background:

B.S. from UMCP in Business/Economics M.S. from UMGC in Cybersecurity Technology

Professional Background:

NIH since 2016 – first job after college Interned at MEP Engineering firm before NIH

Podcast Episode:

<u>"Supplement the Data" – Asset Management Decision-Making for Owners & Integrating Data and Human</u> Experiences

Background of NIH Office of Research Facilities (ORF)

Mission: Provide, maintain, and operate safe, healthy, and attractive NIH facilities.

Lifecycle Functions: Planning, Construction, Operations & Maintenance, Re-capitalization

Support Functions: Utilities, Energy, Environmental, Accreditation, Real Estate/Lease, Budget/Finance, Acquisitions

Scale: Over 300+ buildings; tens of millions of sqft.

Complexity: Heterogenous mix of space types, ranging from basic office & residential, to highly sophisticated mission critical 24/7/365 facilities


onal Institutes of Health

Office of Management

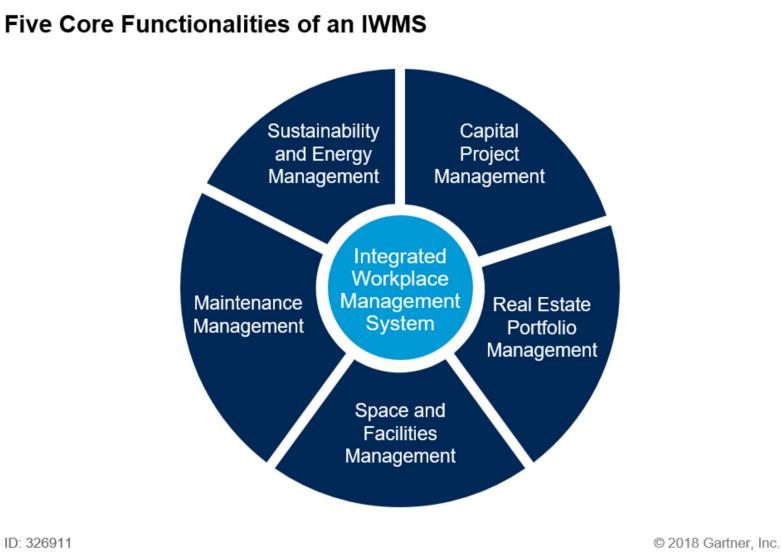
NIH ORF's Legacy Technology & Data Landscape

- Maintenance had 3 different systems.
- Construction had 2 different systems.
- Capital Planning had 3-5 "systems".
- Space had its own system.

ORF's Legacy Systems & Data:

- did not meet full functional or technical requirements.
- did not provide ease of use to users and customers.
- were not integrated in a manner which supports data visibility or crossfunctional workflows.
- some on-premise
- some in non-FedRAMP cloud environments
- some no longer supported by vendor

THE ORF INTEGRATED WORKPLACE MANAGEMENT SYSTEM (IWMS)



What is an Integrated Workplace Management System (IWMS)?

8

Objective: Improve ORF's efficiency, effectiveness, and accountability when administering the NIH Facility Lifecycle by procuring, implementing, and sustaining an Integrated Workplace Management System (IWMS)

Improve efficiency:

- NIH Occupants use 1 system to request facility services (maintenance, construction, space), instead of multiple
- NIH Facility staff manage work and provide status updates in 1 system, instead of multiple
- NIH Facility System Admins & Data Analysts oversee 1 system, instead of multiple

Improve effectiveness:

- Reduce unexpected downtime through risk-based preventative and predictive maintenance
- Provide targeted & non-technical communication to affected occupants for planned and unplanned utility outages
- Mature Asset Management to forecast, budget, plan, and develop projects to address assets nearing end-of-life

Improve accountability:

• Expand transparency to NIH occupants and oversight bodies demonstrating data-driven decision making

Step 1: Working Group & Analysis of Alternative (AoA)

- In 2019, ORF established a working group with representatives from each functional area (Maintenance, Construction, Space, Capital Planning) to identify software requirements for their respective functional area.
- 2. ORF received dozens of software demos from vendors to learn about the products in the marketplace and ask questions.
- 3. Ultimately, ORF established 140 individual requirements, and weighted each requirement.
- 4. ORF identified 3 potential software solutions on the short-list: Archibus, IBM TRIREGA, & Nuvolo.
- 5. Each of the 3 potential solutions were evaluated based on how well the requirements were met.

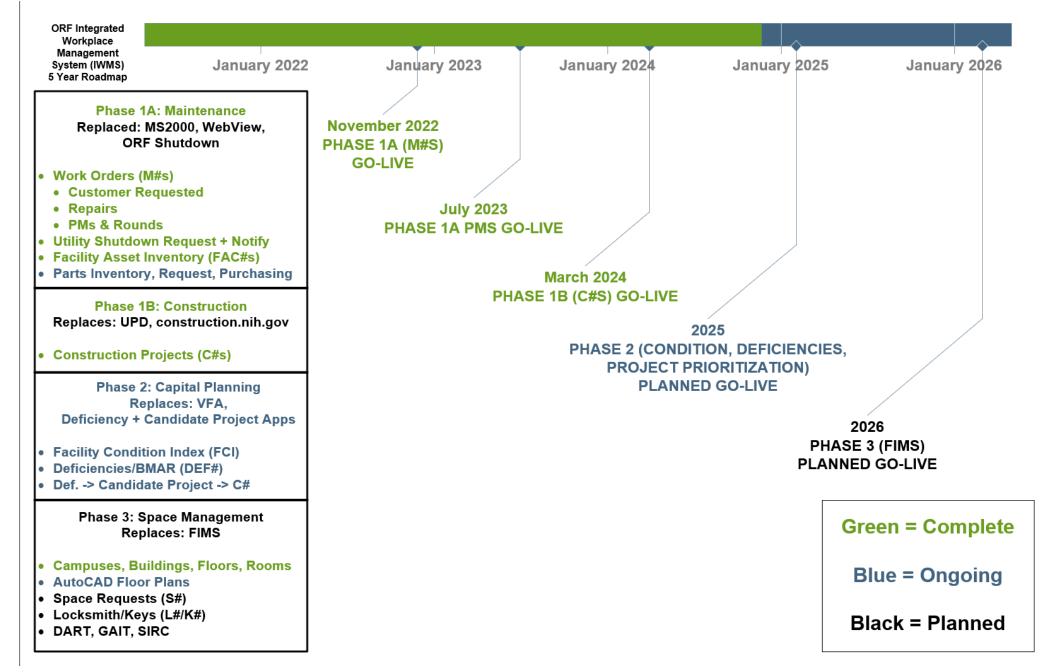
Performance Rating - Weight	ARCHIBUS	IBM TRIRIGA	Service-Now Nuvolo
Green (Total)	103	118	122
Green - Critical	35	38	40
Green - High	49	54	54
Green - Medium	13	17	19
Green - Low	6	8	8
Yellow (Total)	31	18	18
Yellow - Critical	6	4	3
Yellow - High	13	8	9
Yellow - Medium	8	4	3
Yellow - Low	4	2	3
Red (Total)	6	4	0
Red - Critical	2	1	0
Red - High	1	1	0
Red - Medium	1	1	0
Red - Low	1	1	0
Total	140	140	140

GREEN - Proficient	
YELLOW - Acceptable	
RED - Unacceptable	

Requirement Weight Key		
CRIT	TICAL - Go / No-Go	
	I – A mission critical requirement; red for the next release	
opera	IUM – Supports necessary system ations; required eventually but could until a later release if necessary	

Step 2: IT Governance, Funding, & Acquisitions

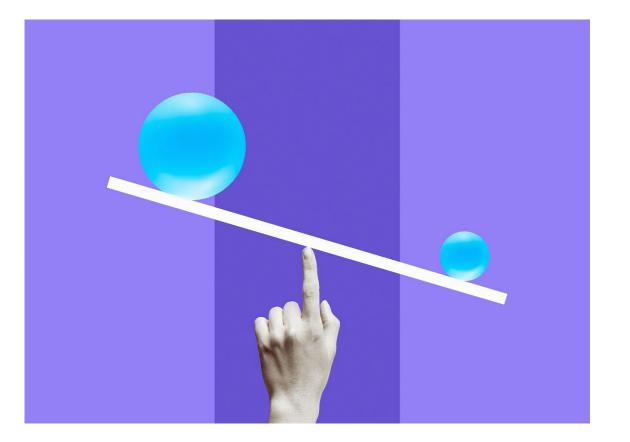
- 1. In early 2020, after identifying Nuvolo as ORF's preferred IWMS solution, we obtained IT Governance approvals for procurement.
- 2. We then submitted an FY21 funding request to provide non-recurring funds for the initial implementation labor, and recurring funds for the licenses.
- 3. Afterwards, we identified the <u>NIH Information</u> <u>Technology Acquisition and Assessment Center</u> (<u>NITAAC</u>) and the CIO-SP3 GWAC as the most suitable acquisition approach.
- 4. In May 2021, ORF awarded the IWMS contract, which provided implementation labor hours and software licenses for the Nuvolo solution.



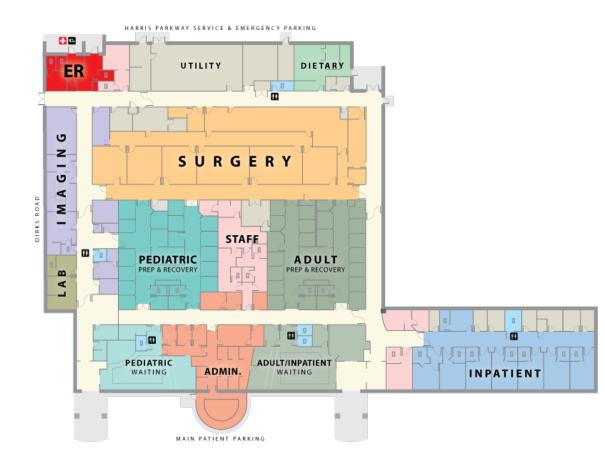
Implementation Approach: Phased by Function

IWMS Phase	Status	Functions	Facilities Role
Phase 1A: Maintenance & Asset Management	Completed 2022/2023	 Customer-Requested Maintenance Preventative Maintenance (PMs) & Repairs Asset Inventory Management Parts Inventory & Purchasing Utility Shutdown Approval & Notification 	Operations & Maintenance (O&M)
Phase 1B: Construction Project Management	Completed 2024	 Baseline Planned Budget & Schedule Actual Obligations & Schedule Milestones Weekly Status Updates & Project Health Project Closeout & Turnover 	Project Managers & CORs
Phase 2: Capital Planning	Ongoing	 Condition Assessment Deficiency Identification Candidate Project Development Candidate Project Scoring & Prioritization 	Engineers
Phase 3: Space Management	Planned for 2025/2026	 Campuses, Buildings, Floors, Rooms AutoCAD Floorplans Space Reservations & Hoteling Key, Lock, and Space Requests 	Architects

Æ


CONNECTING NIH FACILITY LIFECYCLE DATA

Data Governance


- An IWMS provides more value when the underlying data is used for decision-making.
- We should only use high quality data to make decisions; otherwise, we risk making the wrong decision by using inaccurate data.
- Maintaining data takes resources, and we should only track a volume and granularity of data that can be maintained.
- How do we obtain & sustain high quality data?
 - Standards (What) how is the data named, classified, and structured? What data is in-scope vs out-of-scope?
 - Access & Ownership (Who) who should be able to see the data? Who is responsible for keeping it accurate?
 - Changes (When) how is the data changed and when does it need to be updated?
 - Source (Where) where is the data authoritatively stored and updated?

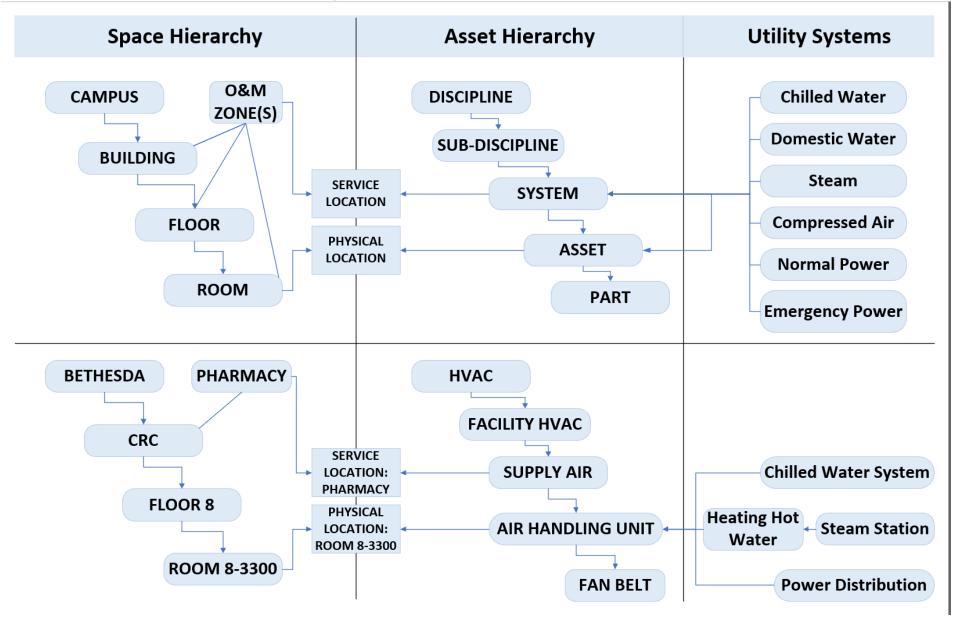
Space Inventory Data Management

- NIH has several campuses, each campus has several buildings, each building has several floor(s), and each floor has several rooms.
- This data is structured in a Space Hierarchy within ORF's IWMS solution, Nuvolo.
- This data can be viewed by all NIH/ORF staff, but can only be created, edited, and deleted by a dedicated ORF team.
- The area (sqft.) data is calculated using standards from the Building Owners and Managers Association (BOMA)
- The Buildings are classified in accordance with HHS, GSA, and OMB policies.
- The Rooms are classified using OmniClass Table 13
 from Construction Specification Institute (CSI)

Asset & Parts Inventory Data Management

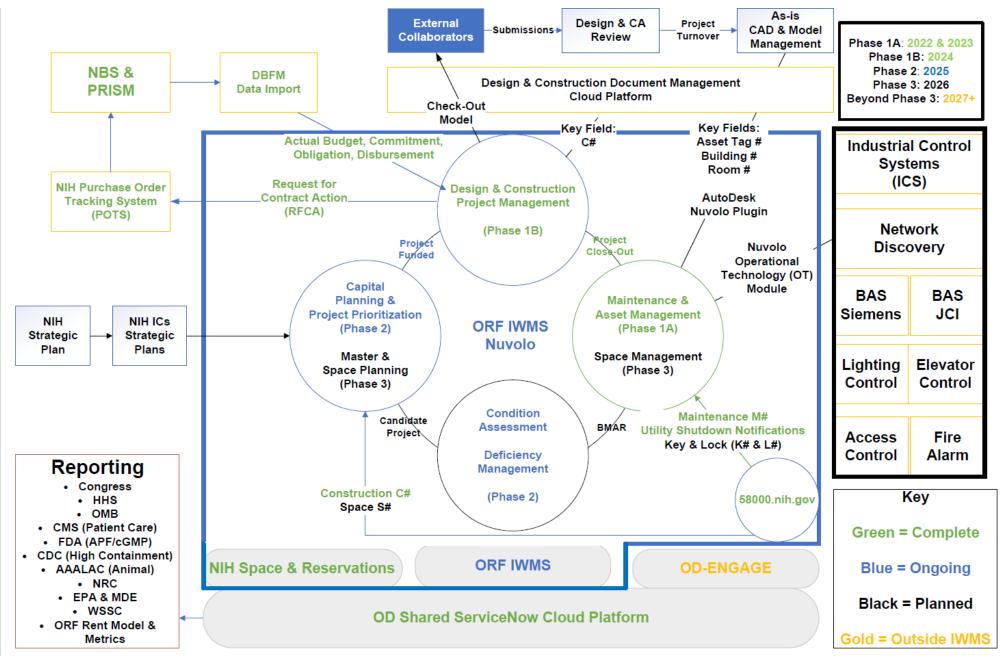
- NIH ORF is responsible for millions of physical products with varying levels of cost and risk of failure.
- We cannot maintain millions of data records; therefore, we must distinguish between Assets vs Parts.
- We track physical products that carry high costs or high risk of failure as "Assets"; everything else are "Parts"
- This data can be viewed by all NIH/ORF staff, but can only be created, edited, and deleted by a dedicated ORF team.
- The Assets are classified & named using UniFormat from Construction Specification Institute (CSI).
- The ORF Asset Hierarchy lists all products that ORF tracks as assets.

Facility Services & Transactions


Service	Unique Tracking # Prefix	Example Tracking #
Maintenance Work Order	M#	M 30140184
Key Request	K#	K 1381048
Lock Request	L#	L 1204018
Construction Project	C#	C 200180
Condition Assessment	FCA#	FCA10009
Deficiency	DEF#	DEF 424812
Candidate Project	CAND#	CAND20008
Space Request	S#	S 201830

- Space & Asset Data are the foundational sets of reference data for Facility Owners.
- We want to ensure that all the services we provide are "linked" or "tied" to the Spaces and/or Assets that the service is applicable to.
- For example, we want to know what assets were installed, modified, or demolished by a Construction Project, and the spaces affected by that project.
- Put differently, none of our services should have a "free-text-box" when indicating the space or asset applicable to the service – it should always be a "drop down menu".
- This is only feasible if the data is in 1 system.

Connecting Spaces, Assets, & Parts


BEYOND IWMS: GEOMETRIC DIGITAL TWINS, OPERATIONAL TECHNOLOGY & IOT

Ļ

