Allergen Risks from Heritable Genetic Modification in Food Animals

Phil Johnson, Ph.D. Dept. of Food Science & Technology Food Allergy Research and Resource Program (FARRP) University of Nebraska—Lincoln, USA philip.johnson@unl.edu

Contents

- Food allergy
 - Animal food allergens
- Scientific basis for allergen risk assessment in GMOs
- What does current research suggest what might be changed?
- Conclusions and future possibilities

FARRP at UNL

- Food Allergen Research and Resource Program.
- Industrial consortium ran through Food Science and Technology Dept at UNL.
- >100 member companies.
- Analytical lab (>50,000 samples / year), research, expert guidance, training.
- Currently 3 faculty members, 2 emeriti + 2 adjuncts.

Food allergy

Food allergy

- Food allergy affects 3-4% of the adult population of the US. Likely increasing.
- Although only 9 foods are required to be labeled as allergens (US), most foods can cause reactions.
- Specific proteins in foods are known to sensitize individuals and elicit reactions.
- Type I **IgE**-mediated hypersensitivity.

Food allergy is not a simple problem

- The involvement of the immune system makes food allergy considerably more challenging issue than most food safety issues
 - The immune system is complex.
 - The immune system is *variable*. Individuals are entirely unique (genetic and environmental factors).

Allergy comprises hugely complex potential hazards (proteins in foods) with a hugely complex target (immune system). No two allergies are the same.

Two major stages of allergy

- Sensitization development of IgE antibodies to a protein or proteins
- Elicitation response to protein(s) to which the individual is sensitized.

Food → **Sensitization** → **Elicitation**

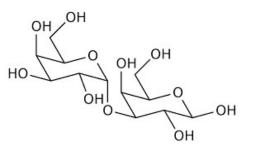
We barely understand what factors make proteins sensitize

- Exposure to food allergens via skin or inhalation is now thought to be a major component of sensitization.
- Early ingestion (4-12 months) is thought to induce tolerance.
- Extremely abundant proteins in foods tend to be recognized as allergenic
- Were peanut a 'novel food' with no history of consumption, we could not predict its status as a major allergen.
- Allergenicity risk assessment is therefore based on risk of elicitation.

Animal Food Allergens

Mammalian meat is not commonly allergenic

- Milk, Eggs, Fish, Shellfish, Tree nuts, Peanuts, Wheat, Soybeans, Sesame.
- Humans tend not to be allergic to proteins similar to those in human bodies.
- The animal food allergens are mostly:
 - organs not encountered in human bodies (eggs)
 - secreted (milk), or
 - taxonomically distant to humans (fish and shellfish)

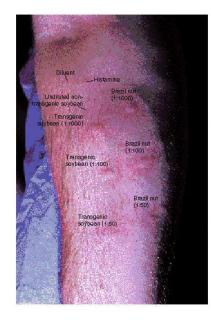


α -gal syndrome

- α -gal = Galactose-alpha-1, 3-galactose
- Initial sensitization via tick bite, subsequent elicitation via meat consumption (or tick bites).
- **Delayed reaction** (typically 2-6 hours after consumption), Symptoms range from **mild to severe** (anaphylaxis).
- Proteins modified by α -gal (glycoproteins) are increasingly implicated in food-elicited reactions.

Scientific basis for allergen risk assessment in GMOs

Identification of a Brazil-Nut Allergen in Transgenic Soybeans


Authors: Julie A. Nordlee, M.S., Steve L. Taylor, Ph.D., Jeffrey A. Townsend, B.S., Laurie A. Thomas, B.S., and Robert K. Bush, M.D. Author Info & Affiliations

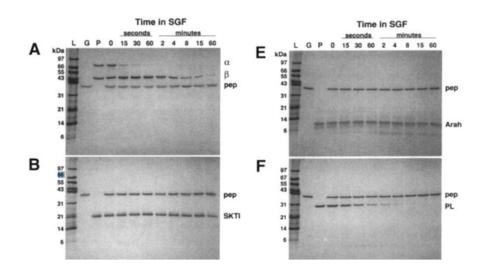
Published March 14, 1996 | N Engl J Med 1996;334:688-692 | DOI: 10.1056/NEJM199603143341103 VOL. 334 NO. 11

> Table 1. Results of Skin-Prick Tests in Three Subjects Allergic to Brazil Nuts.

Subject No.	Maximal Wheal Diameter/Maximal Flare Diameter (mm)					
	DILUENT	HISTAMINE	NON- TRANSGENIC- SOYBEAN EXTRACT	TRANSŒNIC- SOYBEAN EXTRACT*	BRAZIL-NUT EXTRACT*	
1	0/0	6/10	2/5	15/35 (1:1000)	10/30 (1:1000)	
2	1/0	7/19	2/0	9/29 (1:10,000)	7/26 (1:10,000)	
3	0/0	5/20	2/5	14/41 (1:1,000,000)	8/54 (1:1,000,000)	

*The dilutions of the extracts are given in parentheses.

A gene that encodes an allergenic protein will likely produce an allergen when expressed in a GMO



Stability of food allergens to digestion in vitro

James D. Astwood, John N. Leach & Roy L. Fuchs

Nature Biotechnology 14, 1269–1273 (1996) Cite this article

Table 1. Summary of allergen and protein stability in SGF.

	Stability (min)		
Protein	Whole Protein	Fragments	
Egg allergens			
Ovalbumin	60		
Phosvitin	60	_	
Ovomucoid	8	_	
Conalbumin	0	15	
Milk allergens			
B-lactoglobulin	60	—	
Casein	2	15	
BSA	0.5	15	
Soybean allergens			
B-conglycinin (B-subunit)	60	_	
SKTI	60	_	
Soy lectin	15		
B-conglycinin (α-subunit)	2	60	
Gly m 1	0.5	8	
Mustard allergens			
Sin a 1	60	_	
Bra j IE	60	_	
Peanut allergens			
Ara h2	60	_	
Peanut lectin	8	_	
Common plant proteins			
Glycolate reductase (spinach leaf)	0.25 (15 sec)	_	
Rubisco LSU (spinach leaf)	0 (<15 sec)	_	
Rubisco SSU (spinach leaf)	0 (<15 sec)		
Lipoxygenase (soybean seed)	0 (<15 sec)	_	
PEP carboxylase (corn kernel)	0 (<15 sec)		
Sucrose synthetase (wheat kernel)	0 (<15 sec)	_	
ß-amylase (barley kernel)	0 (<15 sec)	_	
Acid phospatase (potato tuber)	0 (<15 sec)	_	
Phosphofructokinase (potato tuber)	0 (<15 sec)	_	

Resistance to digestion by pepsin is a characteristic of many allergenic proteins

Allergen Risk Assessment workflow

- Consider **source** of the transgene
- Bioinformatic screening against allergenic proteins
- Resistance to **pepsinolysis**
- Serum testing if warranted by above
- Any scientific evidence relating to safety will be considered

CODEX, 2009; Codex Alimentarius Commission, 2003; FAO/WHO, 2001

Review > Crit Rev Food Sci Nutr. 1996:36 Suppl:S165-86. doi: 10.1080/10408399609527763.

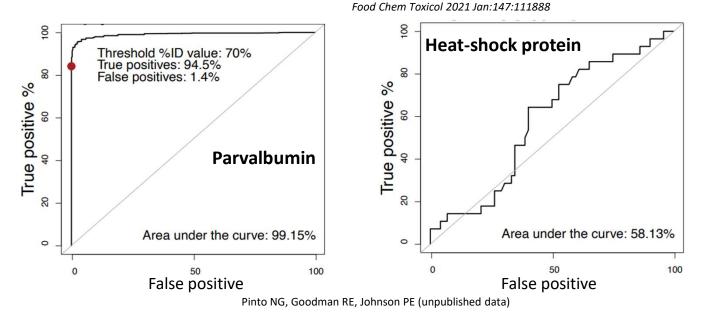
Assessment of the allergenic potential of foods derived from genetically engineered crop plants

D D Metcalfe¹, J D Astwood, R Townsend, H A Sampson, S L Taylor, R L Fuchs

"In the end, a balanced judgement of all the available data generated during allergenicity assessment will assure the safety of foods derived from genetically engineered crops."

To my knowledge, no proven allergic reaction has occurred as a result of any food being genetically modified

Sequence Homology (bioinformatic)


- Introducing an allergenic protein is obviously unwise.
 However, what if a protein is similar to a known allergen ?
- How similar does a protein have to be to an allergen to make it allergenic ?
- FAO/WHO: Primary sequence, **35% Identity** across a sliding 80 residue window.

Testing the 35% sliding 80-mer

- Little **testing** has occurred. Difficulty in obtaining true allergen / non-allergen sequences.
- Likely **expertise lack** in clinical / food allergy research.
- May be too conservative (Abdelmoteleb et al. 2021).

Allergen Sequence Databases

- <u>www.allergenonline.org</u> (FARRP) most frequently used. Others have emerged since AO first release in 2005.
- Researchers submit potential allergens with evidence. Expert panel reviews.
- Largely based on **reactivity of proteins with IgE** from clinically relevant human sera. This is suggestive of, but not proof of allergy.
- Some proteins in this and other databases may not be allergens. The degree of allergenicity ('potency') is not considered either.

Alternatives to current sequence comparisons

- **Multi-feature fusion techniques** (e.g AA composition, dipeptide composition, composition of k-spaced amino acid pairs (Liu *et al*, 2023)
- Primary and tertiary structure (e.g. AllerCatPro db)
- Primary structure utilizing machine-learning techniques (Nedyalkova et al 2023)
- Similarity to known IgE epitopes (Algpred db).
- Primary sequence utilizing Restricted Boltzmann Machines (RBMs) (ALLERDET).
- Random Forest approaches including 29 variables derived from sequence and database information (Westerhout *et al*, 2019).

Testing the pepsinolysis hypothesis

- Recent evidence **does not support resistance to pepsinolysis** as a predictor of allergenicity.
- Many food allergens are susceptible to pepsinolysis. Many non-allergens are resistant.
- Pepsinolysis is still included in most risk assessments, but the contribution to risk assessment is dubious.

<u>EFSA J.</u> 2021 Jan; 19(1): e06350. Published online 2021 Jan 12. doi: <u>10.2903/j.efsa.2021.6350</u> PMCID: PMC7801955 PMID: <u>33473251</u>

Statement on *in vitro* protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants

Application of other methods for allergen risk assessment in GMOs

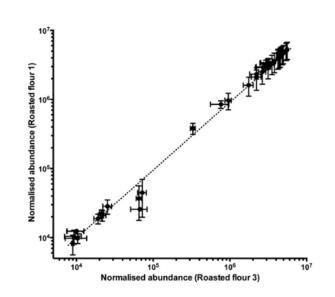
Proteins other than the transgene

- When producing a GMO, proteins other than the transgene may change in abundance.
- Especially relevant where regulatory proteins are introduced / up-regulated or down-regulated.
- Where the GMO animal is allergenic, this raises the possibility of changes in the amounts of allergenic proteins.

Substantial equivalence in protein abundance

- Which proteins have increased in abundance in the GMO?
- **Proteomics** is ideal to describe relative amounts of protein in two similar samples.
- Known allergens can be specifically quantified, or any protein that changes significantly can be identified depending on the workflow.

Front Plant Sci. 2013; 4: 41. Published online 2013 Mar 7. Prepublished online 2013 Jan 4. doi: <u>10.3389/fpls.2013.00041</u> PMCID: PMC3590489 PMID: <u>23471542</u>


Proteomic evaluation of genetically modified crops: current status and challenges

Chun Yan Gong and Tai Wang*

Utility of untargeted proteomics

- Relatively easy to perform as only **relative quantitation** is required.
- Provides extensive information on the transgene product itself (e.g. sequence verification, modification, truncation).
- Most abundant proteins are identified and quantified.
- Information also useful for **other purposes** (e.g. toxicology, nutrition).

A note on wild-type comparators

- Usually, we would consider a wild-type vs GMO comparison to be suitable for comparing allergen contents.
- However, food organisms of a given type **vary widely** in their protein composition (genetic and environmental).
- The pertinent question is 'does the GMO fall outside the normal expected range in terms of presence of allergenic proteins ?'.

Conclusions

- Initial assessment of elicitation potential draws on initial taxonomy, sequence similarity, pepsinolysis.
- Further risk assessment, if warranted, involves **sera of human allergic individuals** who are sensitized to foods containing sequences similar to the transgene.

Considerations for the future

- Although **sound in practice**, current regulatory requirements for allergen risk assessment in GMOs could be **updated**.
- The 35% / 80-mer should be validated, or changed to a more discriminatory, validated, approach.
- Currently no consideration of self-tolerance proteins like those in the human body are unlikely to be allergenic.
- Allergen databases especially including potency and possibly abundance information to facilitate RA.

Considerations for the future 2

- **Pepsinolysis** is at best poorly predictive of allergenicity. Validate or remove.
- Novel workflows, including proteomics, should be **standardized** to ensure consistency of application.

Acknowledgements

• FARRP faculty and staff, particularly Dr Rick Goodman, Dr Steve Taylor, Julie Nordlee, Dr Justin Marsh and Dr Natalia Gutierrez Pinto for input.

