NASA

Evolution of the NAS

 FUTURE AIRSPACE
 Steve Bradford

 Director, Airspace Operations and Safety Program

 NASA ARTR

 February 14, 2024

Success Stories: ARMD Research Technology Transfers to FAA

- Terminal Sequencing and Spacing (TSAS) and Flight Deck Interval Management (FIM) (FY 2011-2017, \$102M)
 - Forecast \$500 million national fuel savings
 - FAA national deployment in Time Based Flow Management (TBFM) starting with Denver in 2020
- Integrated Arrival, Departure, Surface Operations (FY 2015-2021, \$128M)
 - 462,211 gal of fuel saved and 9,552,417 lbs CO₂ emissions reduction, 2,448 hours reduced engine runtime (as of Sept 30, 2019 CLT trials)
 - FAA's Terminal Flight Data Manager (TFDM) Program will deploy IADS capabilities to 27 airports beginning in 2021
- Efficient Re-routes Around Weather (FY 2015-2019, \$57.8M)
 - Demonstrated re-routes are more direct, fuel-efficient, wind optimal, conflict free, and avoid congested airspace (2018)
 - Multi-flight Common Routes and Dynamic Routing Around Weather informing FAA Traffic
 Flow Management System (TFMS)

ATD-1 FLIGHT TEST

Success Stories: ARMD Research Technology Transfers to FAA

- UAS Traffic Management Low-altitude Small UAS Operations in Dense Urban Environments (FY2015-2021, \$107M)
 - Reno, NV, June 17-28, 2019 and Corpus Christi, TX, August 12-23, 2019
 - Enable FAA's UTM Pilot Program and UAS Integration Pilot Program and Low Altitude Authorization and Notification Capability (LAANC)
- UAS Integration in the NAS (FY2011-2021, \$297M)
 - Recommendations based on research findings for Detect and Avoid, Command and Control and Human Performance leading to RTCA and FAA Standards (2020)
- Deliver to Six Commercial Aviation Safety Team (CAST) Safety Enhancements (FY 2015-2019, \$ 32M)
 - Stall prevention and recovery, aircraft state awareness (2019)
 - In response to CAST SE recommendations following accidents
 - Technology transfer algorithms to FAA and airlines to assist in enhanced simulator training for aircraft stall and upset recovery.

Four UAS autonomously flying over Reno managed by UTM

Airspace Vision Drivers

- Diversity
 - Vehicles, Performance and Missions
 - Takeoff and landing locations
- Density
 - Operations increase from 10's K to millions
 - Emergent aviation lower altitude operations
- Complexity
 - New operations, airspace
 - Interoperability
- Human-centric approach for provision of airspace and safety services limits scalability

Transformation is Needed to Accommodate Future Operations

Airspace Vision and Strategy

ICN provides data to power the Sky for All transformation

The Future of the NAS

Evolving NAS beyond NextGen

✓ Will build on the NextGen foundational infrastructure

✓ Will leverage NextGen and industry investments to provide additional capabilities to users beyond the Core-30.

✓ Will address the key drivers of change in a manner that respects our principles of aviation while taking advantage of opportunities brought on by innovation and societal change.

✓ Will provide real-time safety analytics across all operations means safer skies for everyone.

✓ Users will be more connected and information is readily available to support decision making.
 ○ Information is made available based on each participant's needs and access level

Operational View

- In the future the FAA will operate an integrated National Airspace System, from the earth's surface to the lower stratosphere, shared by a diverse set of users with different operational capabilities
- Piloted, remotely-piloted, and fully autonomous in air and space vehicles with a variety of commercial and non-commercial missions requiring various types and levels of air traffic services
- These services are all governed by the FAA with some provided directly by the FAA and others from third-party service suppliers.
- All enabled by extensive data sharing and advanced automation platforms, operating from airports, spaceports, heliports, and an expanded network of vertiports across the United States and its territories.

Transit to Space

Higher Airspace Services

ETM ConOps 1.0 (2020)

Air Traffic Separation Services

112

Concept of Use for Service-Based **Reference Architecture (2022)**

Urban Air Traffic Services

UAM ConOps 2.0 (2023)

Unmanned Traffic Services

UTM ConOps 2.0 (2022)

Integrated Information Environment

.....

Tailored Operations and Flight Rules

TAILORED SERVICES MEET THE NEEDS OF OPERATIONS IN ALL AIRSPACE

FLIGHT RULES ACCEPTABLE RISK TO ALL PARTIES

JOINT USE AIRSPACE WHERE POSSIBLE

In-Time Safety Risk Management

CONTINUOUS DATA Exchange

AUTOMATED Monitoring

MACHINE Learning

PROGNOSTIC RISK MODELING

AES Architecture

Scalable, Flexible, Secure, and Resilient Applications and Common AT Automation Services - Supports Multiple Levels of Criticality.

	Mission Software Layer		
\bigcap	Mission Applications	Mission Services	
	Web application/Mobile application	Flight Planning/filing service, Trajectory Modeling service, Conflict Probe	
	Standards-Based Software Platform Layer		
	IT Services: Frameworks and Environments		
	Enterprise Services (cyber, monitoring	Enterprise Services (cyber, monitoring/logging, identity access management)	
	Enterprise tools (data/API management, data analytics, AI/ML)		
\mathbf{i}	Computing Resources Layer		
	End User Equipment	Compute Infrastructure	
	(Workstations/Monitors)	(Public/Private Cloud)	
	FAA Inf	rastructure	
	FENS		

Automation Evolution & Information Key Characteristics

- Distinct and segregated Operating Environments ensure protection based on criticality.
- Layered architecture provides separation of responsibility & and standardization across the FAA.
- Integrated Zero trust to ensure secure and resilient architecture.
- Distributed, Service-based architecture ensures agile services and faster delivery of capabilities.
- Common mission services enable reusability.
- Modern API-driven interfaces for standardized information exchange.
- Common Information services for Information management and Information sharing with diverse operations.

Airspace Vision and Strategy

- Seamless Integration of Future Diverse Operations
 - Federated Architecture
 - Mission and Service-Oriented
 - Increasingly Autonomous
 - Prognostic Safety
- Technical Approach
 - Validate xTM Concept
 - Define Architecture and Interoperability
 - Evolution of NAS Operations
 - Data-driven ATM Technology for the Existing NAS
 - Disruptive Capabilities for the Future NAS
 - In-Time Safety Assurance
 - Leverage data analytics toward predictive and prognostic safety services
 - Validate IASMS concept and architecture

Digitized, ML and AI-Enabled, Highly Automated & Increasingly Autonomous

AOSP Contributions Toward Airspace Transformation

Evolve Toward Federated, Service-Oriented NAS

DIP – Data fusion, ML/AI, Agile deployment, ATC and airline services, Sustainable ops demos

PAAV – Integration of remotely piloted/supervised ops in the NAS, Infrastructure as a service

IASMS – In time safety assurance services and SMS

Validate xTM Concept

ETM – 2nd xTM, Cooperative operating practices for diverse ops, Conflict Mgmt

UTM BVLOS – Pathfinding for rulemaking Interoperability of services, Validation of services

AAM – Architecture, Cooperative operating practices, Interoperability of services, XTM-ATS Interoperability, Requirements for passenger ops, Vehicle, Safety

IASMS – In time safety assurance services and architecture

Leveraging NASA/FAA Research Transition Teams

- Advanced Air Mobility RTT
 - Architecture for the xTM Concept
 - Integration of Autonomous Vehicles into the NAS
- Digital Mesh Technology and Applications RTT
 - Digital Information Platform for Commercial Transports Enabling Service-oriented Architecture
 - ML/AI Digital and Intelligent ATM Services
- Upper E Traffic Management
 - xTM Concept and Mission-oriented Architecture
- UAS Traffic Management RTTs
 - BVLOS for UAS
 - Interoperability
- System Wide Safety RTT
 - In-Time Aviation Safety Management
 - Data Analytics
 - V&V of Complex Systems/Assurance of Autonomy
 - Wildfire Management RTT
 - Airspace Access
 - Traffic Management

AAM as Pathfinder for FAA NAS Modernization and Sky For All

Architecture will evolve and is a major contribution of NASA's effort

Sky for All Aviation Ecosystem Transformation

Summary

- Great progress made on alignment and joint evolution of Sky For All
 - FAA, CANSO, SESAR Joint Undertaking, ATCA, NATCA, Flight Safety Foundation
- AOSP portfolio well aligned to deliver key NAS 2040 capabilities
 - xTM, DIP, IASMS
- AAM, ETM, UTM excellent initial pathfinding for NAS 2040 and Sky For All
- Further refinement of Sky For All in FY24-25
 - Functional Reference Architecture, Initial ConOps, R&D Roadmap
- Key Questions/Studies
 - Autonomy and Future Flight Deck Roadmap
 - CNSS Requirements Roadmap
 - V&V and Assurance of Autonomy

