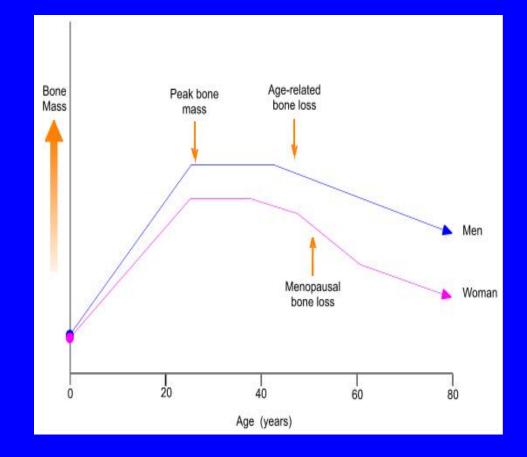
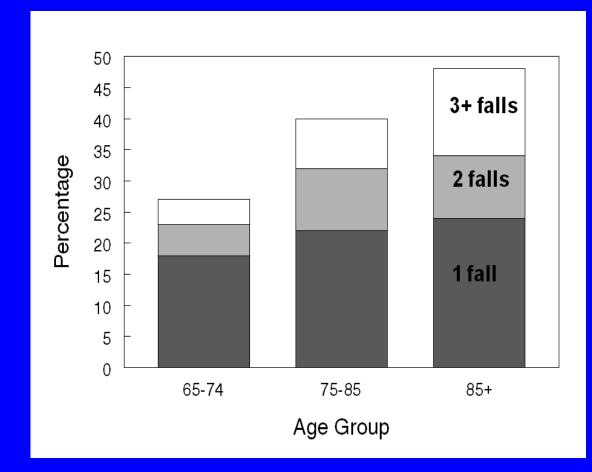

Osteoporosis, sarcopenia, and fall risk in women

Bess Dawson-Hughes, MD

Objectives

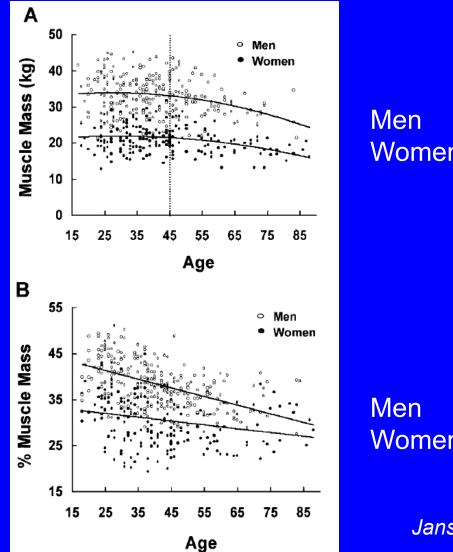

- Prevalence, prevention, treatment, and risk factors for osteoporosis, sarcopenia and frailty in women
- Age-related skeletal muscle dysfunction and link to falls and fractures
- Research accomplishments in treating musculoskeletal disorders
- Research gaps and opportunities to advance the treatment of musculoskeletal disorders

FRAX based 10-year probability of a hip fracture in US women and men by race/ethnicity



Dawson-Hughes B. Osteoporosis Int 2008; 19:449-58.

Why are women at higher risk of fracture than men?


Aging and compounding falls Proportions of older community-dwelling women who reported falling in a 12-month period (The Randwick Study)

Lord SR. Australian J Pub Health 1993;17:240-5

Muscle mass by whole body MRI in 468 men and women

(67% Caucasian, 17% African-American, 8% Asian, 7% Hispanic)

33 kg Women 21 kg

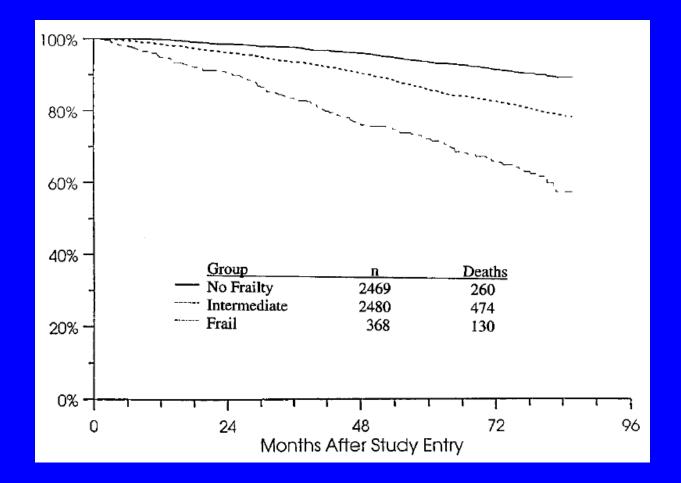
38.4% Women 30.6%

Janssen I. J Appl Physiol 2000;89:81-88.

Sarcopenia contributes to frailty

Components of Frailty

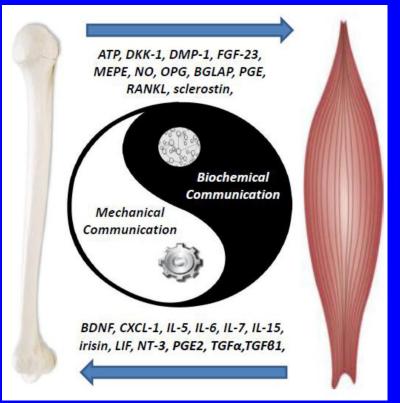
- Unintentional wt loss (>10 lb in last yr)
- Exhaustion
- Weakness (grip strength in lowest 20%ile)
- Slow gait (slowest 20%ile by gender and height)
- Low physical activity (<383 kcal/wk males, <270 females)


Fried LP. J Gerontol 2001;56:M146-156.

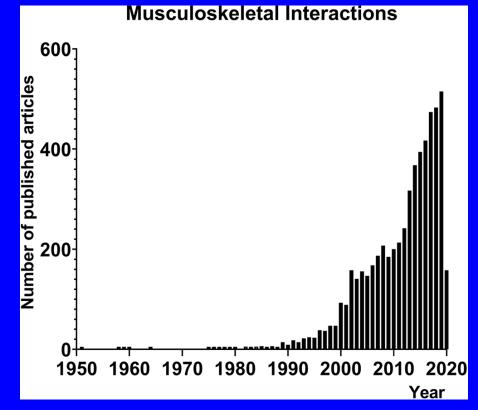
Prevalence of pre-frailty and frailty (in 5317 adults age 65+ in Cardiovascular Health Study)

# of components	Men %	Women %	Total %
0	45	48	46
1	32	33	32
2 (pre-frail)	15	14	15
3 (frail)	6	6	6
4	2	1	1
5	0.2	0.1	0.2

Fried LP. J Gerontol 2001;56:M146-156.


Survival curves by frailty status (in 5317 adults age 65+ in Cardiovascular Health Study)

Fried LP. J Gerontol 2001;56:M146-156.

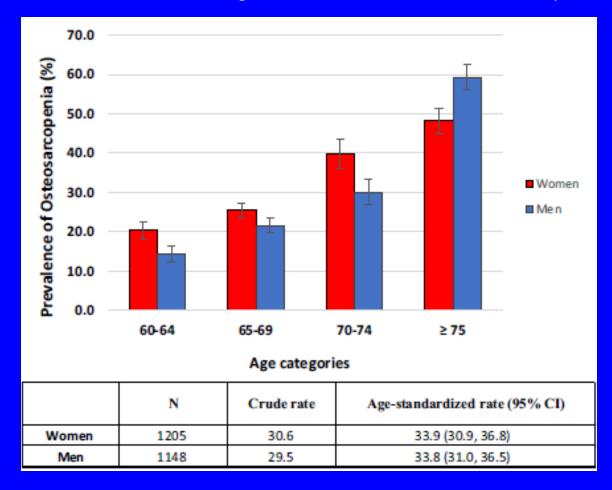

Bone-muscle cross-talk

Mechanisms

Brotto M, Bonewald L. Bone 2015;80:109-114.

Number of published articles

Lara-Castillo N and Johnson ML. Current osteoporosis reports 2020;18:408-421.


"Osteosarcopenia"

- Osteosarcopenia is characterized by loss of appetite, weight loss, and loss of bone and muscle mass
- The definition of osteopenia/osteoporosis is standardized (WHO T-score < -1)
- The definition of sarcopenia is *not standardized*; common definitions include:

low lean mass by DXA low lean mass by DXA + low grip strength low lean mass by DXA + slow gait speed low lean mass by DXA + low grip and low gait speed

Prevalence of <u>osteosarcopenia</u> by age category in men and women

(population based study in 2353 adults age 60+ in Iran; sarcopenia defined as DXA lean mass/ht² <7.0 kg/m² for men and <5.4 for women)

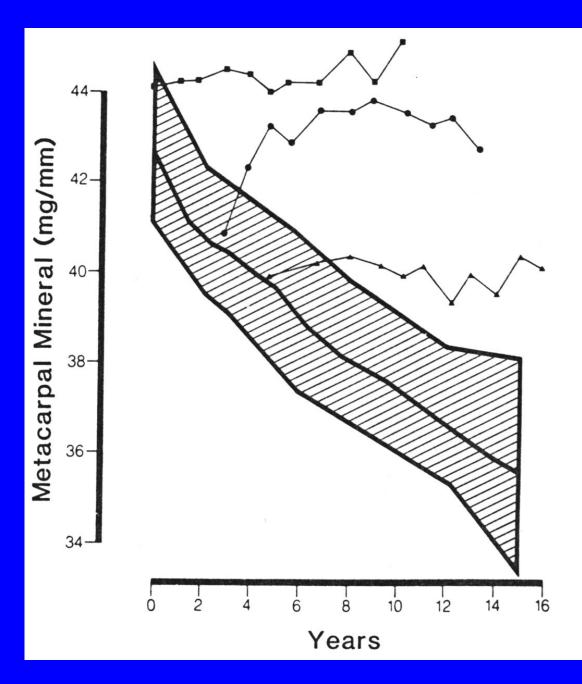
Fahimfar N. Calcif Tissue Int 2020;106:364-370.

Meta-analysis: Relative risk of fracture in adults with sarcopenia

Study		openia N: Total		rcopenia N: Total		Relative Risk of fracture in sarcopenia	RR (95% CI)	Weight%
Cawthon	79	257	1305	5677			1.26 (1.03, 1.5	3) <u>5</u> 9.71
Hars	14	102	104	811		•	1.06 (0.63, 1.7	9) 11.66
Huo	26	87	33	151		•	1.28 (0.81, 2.0	3) 12.51
Locquet	48	64	54	208			2.08 (1.51, 2.8	6) 16.12
Overall p<0.001, Heterogeneity: I ² = 63.6%, p=0.041						\diamond	1.37 (1.18, 1	.59)100.00
				.5		2 4		

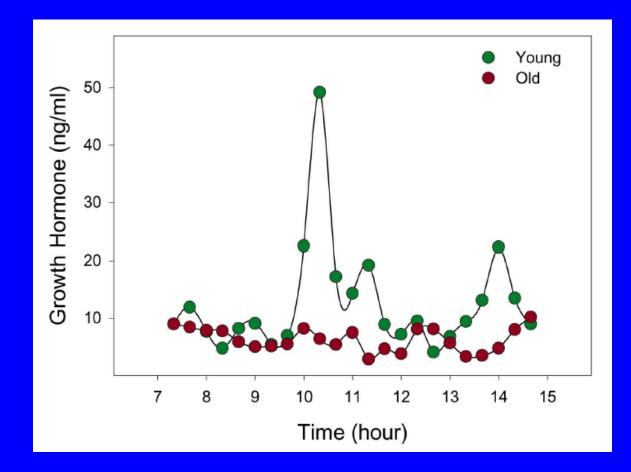
Nielsen BR. Eur Geriatr Med 2018; 9:419-434.

Meta-analysis: Prevalence of sarcopenia in adults with a fracture

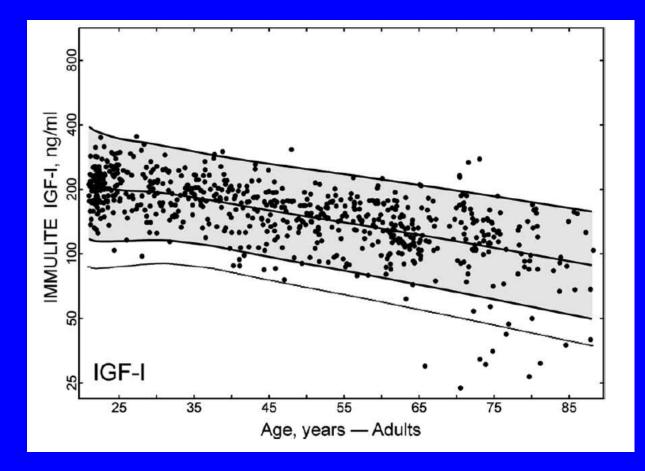

Study	Sarcopenia (n)	Total (n)						ES (95% CI)	Weight%
Di Monaco 2	2007 26	27				_	•	0.96 (0.82, 0.99) 7.66
Di Monaco 2	2011 180	313			+	+		0.58 (0.52, 0.63	3) 12.96
Di Monaco 2	2015 80	138			-+	—		0.58 (0.50, 0.66	6) 5.73
Di Monaco 2	2017 74	80				-	•	0.93 (0.85, 0.97	') 11.67
Fiatarone	112	193			-+	—		0.58 (0.51, 0.65	i) 8.02
Gonzales-M	. 82	479	-					0.17 (0.14, 0.21) 34.17
Iolascon	14	77		-				0.18 (0.11, 0.28	3) 5.24
Landi	43	127						0.34 (0.26, 0.42	2) 5.74
Steihaug	74	202						0.37 (0.30, 0.43	3) 8.81
Overall p<0 Heterogene	.001 sity: I ² =99.0%,	p<0.001		<	>			0.46 (0.44, 0.48	3) 100.00
			0.2	5	І .5 Р	Prevalence%	1 5		

Nielsen BR. Eur Geriatr Med 2018; 9:419-434.

Common causes of bone and muscle loss in women


- Abrupt loss of estrogen at menopause causes rapid loss of bone mass.
- The amplitude of normal pulsatile pituitary growth hormone secretion declines with aging → ↓ hepatic production of IGF-1, the hormone that is anabolic to bone and muscle.
- 'Anorexia of aging' results in reduced intake of protein, calcium, vitamin D and other nutrients essential for bone and muscle formation and in weight loss.
- An age-related, generalized decline in physical activity contributes to losses of bone and muscle. The adherence rate to exercise recommendations in older adults is <50% at 6 mo.

Effect of HRT on Bone Loss after Menopause (shaded area = untreated normal range)


Lindsay R. JBMR 1992; 7: 55-63.

Growth hormone release from the pituitary declines with aging

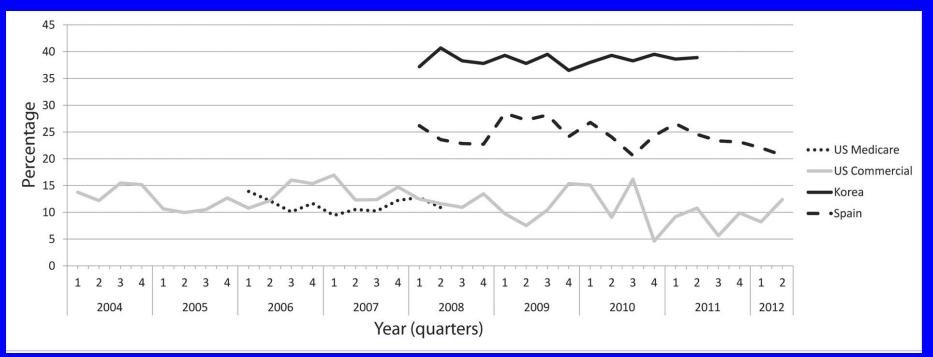
Sonntag WE. Endocrinol 1980;107:1875-9.

IGF-1 levels decline with age

Elmlinger MW. Clin Chem Lab Med 2004;42:654-64.

FDA approved pharmacologic Interventions

<u>To reduce fracture risk</u> – multiple anti-resorptive and anabolic interventions are approved.


To improve muscle performance and reduce risk of falling – *no* pharmacologic interventions are approved.

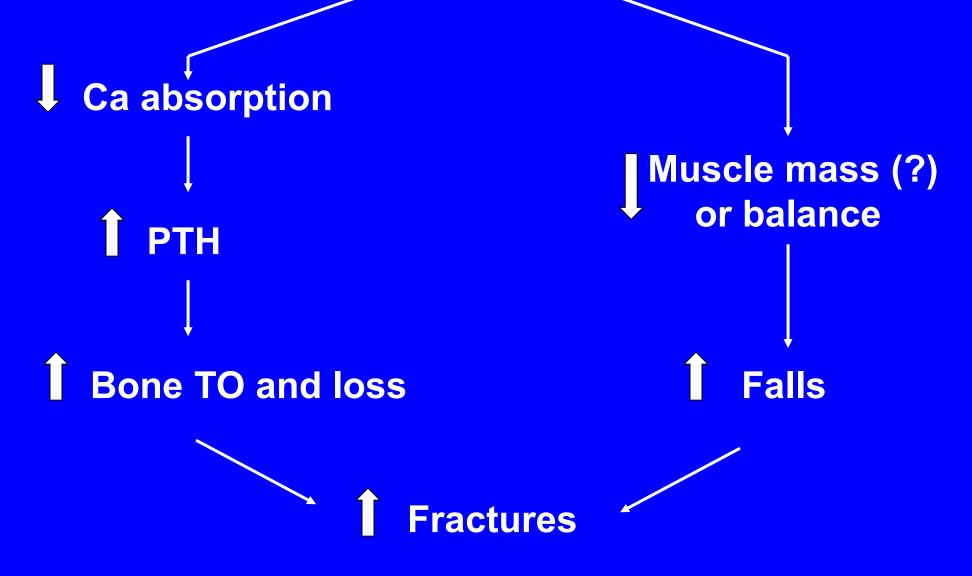
Pivotal (registration) fracture prevention trials in older women

Drug/Study	Calcium, mg/d	Vitamin D, IU/d	Vert fx risk reduction, %	Hip fx risk reduction, %
1. Alendronate	500	250	47%	51%
2. Risedronate	1000	500	41%	30%
3. Ibandronate	500	400	62%	na
4. Zoledronate	1000-1500	800-1200	70%	41%
5. Raloxifene	500	400-600	30%	na
6. Teriparatide	1000	400-1200	65%	na
7. Abaloparatide	yes	yes	86%	43% (non-vert)
8. Denosumab	≥1000	≥400	68%	40%
9. Romoszumab	500-1000	600-800	73%	36% (non-vert)

1.Black DM. Lancet 1996;348:1535-1541; 2. Reginster J. Osteoporor Int 2000;11:83-91; McClung MR. N Engl J Med 2001;344:333-340; 3. Chesnut CH. J Bone Miner Res 2004;19:1241-1249; 4. Lyles K. N Engl J Med 2007;357:1799-1809.; 5. Ettinger B. JAMA 1999;282:637-645; 6. Neer RM. N Engl J Med 2001;344:1434-1441; 7. Miller P. JAMA 2016;316:722-733; 8. Cummimgs SR. N Engl J Med 2009;361:756-765; 9. Cosman F. N Engl J Med 2016;375:1532-1543.

Osteoporosis treatment after acute hip fracture is lagging in the US

Compliance in first year


US: 67-70% Spain: 66% Korea: 43%

Kim SC. AM J Med 2015;128:519-526.

New Frontier: Senolytics as potential treatment to increase bone mass (and other chronic diseases)

- Preclinical studies in mice indicate that removal of senescent cells from the bone microenvironment improves bone mass.
- A phase 2 trial is underway now in 120 women age 60+ to test the effect of intermittent Dasatinib treatment for 20 weeks on markers of bone turnover, CTX and P1NP. (NCT04313634)
- Dasatinib (in a higher dose) is used to treat chronic myeloid leukemia.

Meta-analysis of RCTs: vitamin D + calcium – effect on any fracture and hip fracture

	Calcium+	Vitamin D		Control					
Source	Calcium, mg/d	Vitamin D, IU/d	Events, No./ Total Participants, No.	Events, No./ Total Participants, No.	Risk of Blas	Rate Ratio (95% CI)	Favors Calcium + Vitamin D	Favors Control	Welght, %
Any fracture									
Chapuy et al, ⁵⁰ 2002	1200	800	70/393	35/190	High	0.96 (0.61-1.51)		`	1.6
Porthouse et al, ⁵¹ 2005	1000	800	58/1321	91/1993	High	0.96 (0.69-1.34)			2.8
Salovaara et al, ⁵² 2010	1000	800	86/1586	103/1609	High	0.84 (0.63-1.13)			3.7
Grant et al, ⁴⁷ 2005	1000	800	179/1306	192/1332	High	0.94 (0.76-1.17)			6.6
Chapuy et al, ⁵³ 1992	1200	800	160/1634	215/1636	High	0.72 (0.58-0.89)			7.0
Jackson et al, ⁵⁴ 2006	1000	400	2102/18176	2158/18106	Low	0.97 (0.91-1.03)		-	78.3
All			2655/24416	2794/24866		0.94 (0.89-0.99)	\diamond		100.0
Subtotal (Q=7.3, df=5, F)=.20; l ² =3	1.4%)							
HIp fracture									
Salovaara et al, ⁵² 2010	1000	800	4/1586	2/1609	High	1.98 (0.40-9.81)	*		0.9
Porthouse et al, ⁵¹ 2005	1000	800	8/1321	17/1993	High	0.72 (0.32-1.61)			3.4
Chapuy et al, ⁵⁰ 2002	1200	800	27/393	21/190	High	0.58 (0.31-1.08)	+ - + + + + + + + + + + + + + + + + + + +	_	5.5
Grant et al, ⁴⁷ 2005	1000	800	46/1306	41/1332	High	1.15 (0.75-1.76)			12.0
Chapuy et al, ⁵³ 1992	1200	800	80/1634	110/1636	High	0.72 (0.53-0.96)			25.5
Jackson et al. 54 2006	1000	400	175/18176	199/18106	Low	0.87 (0.71-1.07)			52.7
All			340/24416	390/24866		0.84 (0.72-0.97)	\diamond		100.0
Subtotal (Q=6.0, df=5, F)=.31; l ² =1	.6.5%)							
							0.5 1	1.5	
							Rate Ratio (95		

Yao P. JAMA Open 2019;2(12)e1917789.

How much vitamin D to reduce fracture risk? The evidence supports 800 IU/d (in combination with calcium)

	Calcium + Vitamin D		Control						
Source	Calcium, mg/d	Vitamin D, IU/d), Events, No./ Total Participants, No.	Events, No./ Total Participants, No.	Risk of Blas	Rate Ratio (95% CI)	Favors Calcium + Vitamin D	Favors Control	Welght, %
Any fracture									
Chapuy et al, ⁵⁰ 2002	1200	800	70/393	35/190	High	0.96 (0.61-1.51)			1.6
Porthouse et al, ⁵¹ 2005	1000	800	58/1321	91/1993	High	0.96 (0.69-1.34)			2.8
Salovaara et al, ⁵² 2010	1000	800	86/1586	103/1609	High	0.84 (0.63-1.13)			3.7
Grant et al, ⁴⁷ 2005	1000	800	179/1306	192/1332	High	0.94 (0.76-1.17)			6.6
Chapuy et al, ⁵³ 1992	1200	800	160/1634	215/1636	High	0.72 (0.58-0.89)			7.0
Jackson et al, ⁵⁴ 2006	1000	400	2102/18176	2158/18106	Low	0.97 (0.91-1.03)	-	F	78.3
All			2655/24416	2794/24866		0.94 (0.89-0.99)	\diamond		100.0
Subtotal (Q=7.3, df=5, P	P=.20; I ² =	1.4%)							
HIp fracture									
Salovaara et al, ⁵² 2010	1000	800	4/1586	2/1609	High	1.98 (0.40-9.81)			0.9
Porthouse et al, ⁵¹ 2005	1000	800	8/1321	17/1993	High	0.72 (0.32-1.61)			3.4
Chapuy et al, ⁵⁰ 2002	1200	800	27/393	21/190	High	0.58 (0.31-1.08)	• • • · · · · · · · · · · · · · · · · ·		5.5
Grant et al, ⁴⁷ 2005	1000	800	46/1306	41/1332	High	1.15 (0.75-1.76)			12.0
Chapuy et al, ⁵³ 1992	1200	800	80/1634	110/1636	High	0.72 (0.53-0.96)	e		25.5
Jackson et al, ⁵⁴ 2006	1000	400	175/18176	199/18106	Low	0.87 (0.71-1.07)		—	52.7
All			340/24416	390/24866		0.84 (0.72-0.97)	\diamond		100.0
Subtotal (Q=6.0, df=5, P	P=.31; P=1	16.5%)							
							0.5 1	1 1.5	

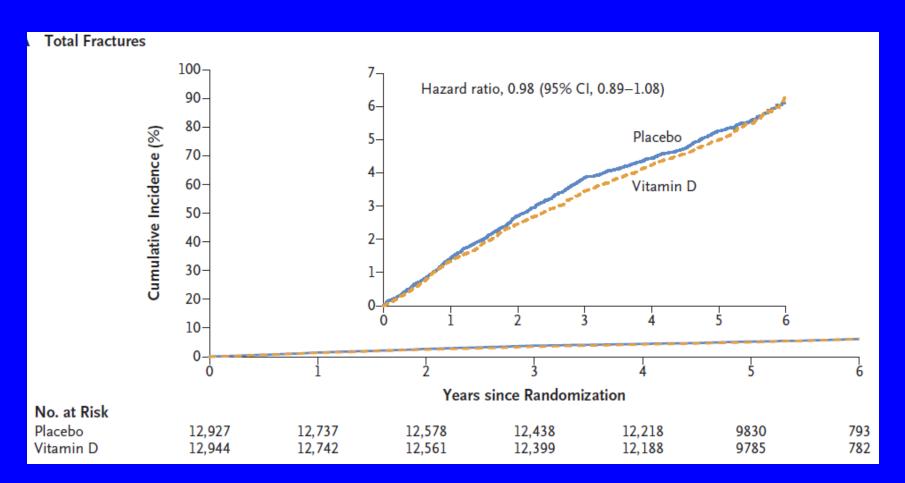
Yao P. JAMA Open 2019;2(12)e1917789.

Rate Ratio (95% CI)

Meta-analysis of RCTs: vitamin D alone – effect on any fracture and hip fracture

	Vitamin D		Control				_	
Source	Treatment	Events, No./ Total Participants, No.	Events, No./ Total Participants, No.	Risk of Blas	Rate Ratio (95% CI)	Favors Vitamin D	Favors Control	Welght, %
Any fracture								
Glendenning et al, ³⁹ 2012	150000 IU/3 mo	10/353	10/333	High	0.94 (0.39-2.29)			0.8
Larsen et al, ⁴⁰ 2018	20 000 IU/wk	15/256	13/255	Unclear	1.16 (0.54-2.48)		∔ ∎ →	1.0
Law et al, ⁴¹ 2006	100000 IU/3 mo	66/1762	53/1955	High	1.39 (0.97-2.01)	_		4.5
Meyer et al, ⁴² 2002	400 IU/d	69/569	76/575	High	0.90 (0.64-1.28)			4.9
LIps et al, ⁴³ 1996	400 IU/d	135/1291	122/1287	High	1.12 (0.86-1.45)			8.9
Trivedi et al, ⁴⁴ 2003	100000 IU/4 mo	119/1345	149/1341	High	0.78 (0.61-1.00)			9.6
Sanders et al, ⁴⁵ 2010	500000 IU/y	171/1131	135/1127	High	1.31 (1.03-1.67)		∔	10.4
Khaw et al, ⁴⁶ 2017	100000 IU/mo	156/2558	136/2550	Low	1.15 (0.91-1.46)	_		10.8
Grant et al, ⁴⁷ 2005	800 IU/d	208/1343	192/1332	High	1.08 (0.88-1.35)			13.0
Lyons et al, ⁴⁸ 2007	100000 IU/4 mo	205/1725	218/1715	High	0.92 (0.76-1.14)		Ŧ	14.2
Smith et al, ⁴⁹ 2007	300000 IU/y	306/4727	279/4713	High	1.11 (0.93-1.30)			21.9
All		1460/17060	1383/17 183		1.06 (0.98-1.14)	-	\sim	100.0
Subtotal (Q = 14.5, df = 10, l	P =.15; I ² = 31.1%)							
Hlp fracture								
Sanders et al, ⁴⁵ 2010	500000 IU/y	19/1131	15/1127	High	1.22 (0.64-2.48)		→	4.7
Law et al, ⁴¹ 2006	100000 IU/3 mo	24/1762	20/1955	High	1.28 (0.73-2.41)		→	6.1
Trivedi et al, ⁴⁴ 2003	100000 IU/4 mo	21/1345	24/1341	High	0.83 (0.48-1.57)			6.2
Grant et al, ⁴⁷ 2005	800 IU/d	47/1343	41/1332	High	1.14 (0.75-1.75)			12.0
Meyer et al, ⁴² 2002	400 IU/d	50/569	47/575	High	1.08 (0.71-1.63)			12.6
LIps et al, ⁴³ 1996	400 IU/d	58/1291	48/1287	High	1.15 (0.82-1.79)			14.4
Smith et al, ⁴⁹ 2007	300000 IU/y	66/4727	44/4713	High	1.42 (1.03-2.18)	-		15.4
Lyons et al, ⁴⁸ 2007	100000 IU/4 mo	112/1725	104/1715	High	1.06 (0.82-1.42)			28.6
All		397/13893	343/14045		1.14 (0.98-1.32)	4	\diamond	100.0
Subtotal (Q= 3.0, df= 7, P=	.89; I ² =0.0%)						1	
					0.	5 1 Rate Ratio	2 (95% CI)	

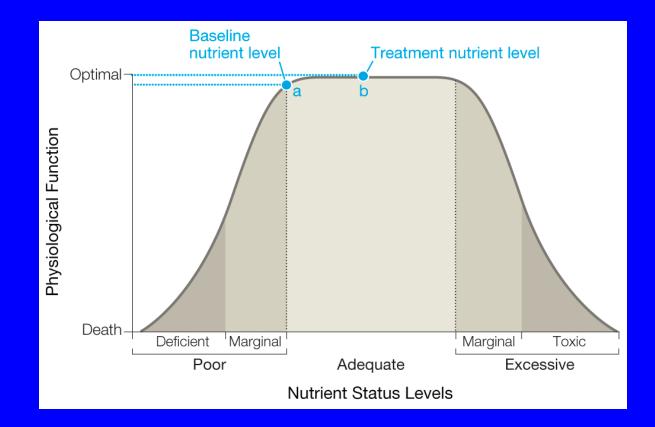
Yao P. JAMA Open 2019;2(12)e1917789.


Meta-analysis of RCTs: vitamin D alone – effect on any fracture and hip fracture

	Vitamin D		Control					
Source	Treatment	Events, No./ Total Participants, No.	Events, No./ Total Participants, No.	Risk of Blas	Rate Ratio	Favors Vitamin D	Favors Control	Welght, %
Any fracture	requirem	Participanto, No.	Participants, No.	NISK OF DIAS	(33/801)	vicanini D	control	70
Glendenning et al, ³⁹ 2012	150000 IU/3 mo	10/353	10/333	High	0.94 (0.39-2.29)			0.8
Larsen et al, ⁴⁰ 2018	20 000 IU/wk	15/256	13/255	Unclear	1.16 (0.54-2.48)	-		1.0
Law et al, ⁴¹ 2006	100000 IU/3 mo	66/1762	53/1955	High	1.39 (0.97-2.01)			4.5
Meyer et al, ⁴² 2002	400 IU/d	69/569		High	0.90 (0.64-1.28)			4.9
			76/575					
Lips et al, ⁴³ 1996	400 IU/d	135/1291	122/1287	High	1.12 (0.86-1.45)			8.9
Trivedi et al, ⁴⁴ 2003	100000 IU/4 mo	119/1345	149/1341	High	0.78 (0.61-1.00) -			9.6
Sanders et al, ⁴⁵ 2010	500000 IU/y	171/1131	135/1127	High	1.31 (1.03-1.67)			10.4
Khaw et al, ⁴⁶ 2017	100000 IU/mo	156/2558	136/2550	Low	1.15 (0.91-1.46)	—		10.8
Grant et al, ⁴⁷ 2005	800 IU/d	208/1343	192/1332	High	1.08 (0.88-1.35)	_		13.0
Lyons et al, ⁴⁸ 2007	100000 IU/4 mo	205/1725	218/1715	High	0.92 (0.76-1.14)		£	14.2
Smith et al, ⁴⁹ 2007	300000 IU/y	306/4727	279/4713	High	1.11 (0.93-1.30)			21.9
All		1460/17060	1383/17183		1.06 (0.98-1.14)	-		100.0
Subtotal (Q = 14.5, df = 10,	P =.15; I ² = 31.1%)							
HIp fracture								
Sanders et al, ⁴⁵ 2010	500000 IU/y	19/1131	15/1127	High	1.22 (0.64-2.48)			4.7
Law et al, ⁴¹ 2006	100000 IU/3 mo	24/1762	20/1955	High	1.28 (0.73-2.41)		→ ∎→	6.1
Trivedi et al, ⁴⁴ 2003	100000 IU/4 mo	21/1345	24/1341	High	0.83 (0.48-1.57)		_ <u>_</u>	6.2
Grant et al, ⁴⁷ 2005	800 IU/d	47/1343	41/1332	High	1.14 (0.75-1.75)			12.0
Meyer et al, ⁴² 2002	400 IU/d	50/569	47/575	High	1.08 (0.71-1.63)			12.6
Lips et al, ⁴³ 1996	400 IU/d	58/1291	48/1287	High	1.15 (0.82-1.79)		_ 	14.4
Smith et al, ⁴⁹ 2007	300000 IU/y	66/4727	44/4713	High	1.42 (1.03-2.18)	-		15.4
Lyons et al, ⁴⁸ 2007	100000 IU/4 mo	112/1725	104/1715	High	1.06 (0.82-1.42)			28.6
All		397/13893	343/14045		1.14 (0.98-1.32)	4	\diamond	100.0
Subtotal (Q= 3.0, df= 7, P=	=.89; I ² = 0.0%)							
					0.5	1	2	
						Rate Ratio	(95% CI)	

Yao P. JAMA Open 2019;2(12)e1917789.

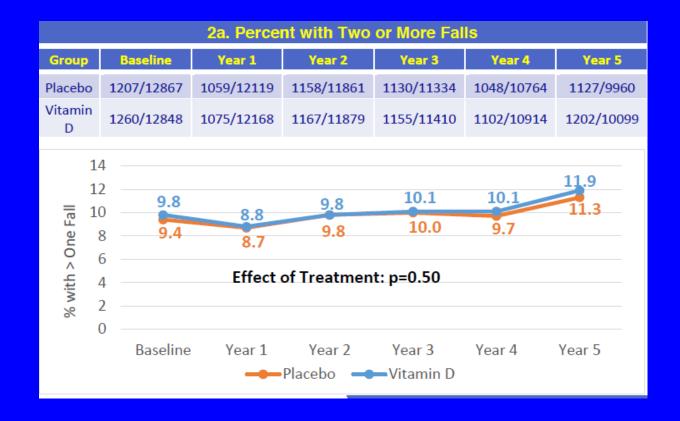
VITAL: No effect of vitamin D, 2000 IU/d, on fracture risk


(N = 25,871 older adults; baseline 25(OH)D level = 30.8 ng/ml)

LeBoff MS. NEJM 2022;387:299-309.

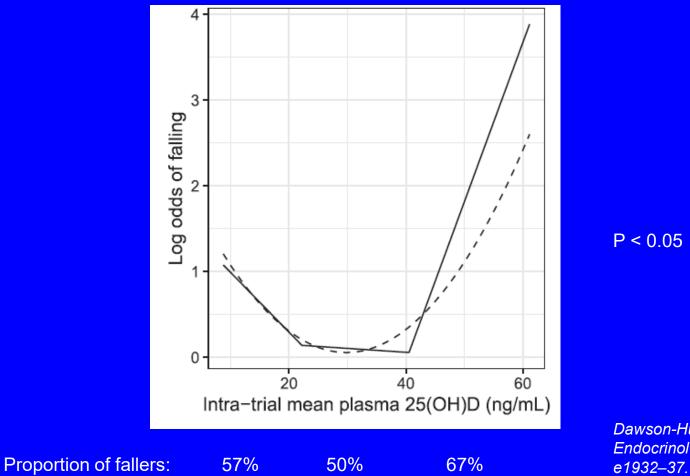
What could explain the mix of findings that vitamin D *does* and *does not reduce* fall risk and may actually *increase* fall risk?

Nutrient intake and physiologic function



Morris MC. JAMA 2011;305, no.13.

Role of vitamin D in fall risk


- Controversial
 - Meta-analysis found no effect of D on muscle strength (Bislev LS. JBMR 2021; 36:1651-1660).
 - Recent mega-trials have been null.
- Was it because they tested replete populations?
- Did bolus dosing in some trials contribute to the null?
- Or does vitamin D have no effect on fall risk?

VITAL: Impact of 2,000 IU/d of vitamin D₃ vs P on risk of falling N=25,871; mean age 67.1 yr; 5 year intervention $25(OH)D = 30.8 \rightarrow 41.6$ ng/ml

Leboff MS. J Clin Endo Metab 2020;105:2929-2938.

STOP IT: Intra-trial mean 25(OH)D and risk of falling (in 410 men and women mean age 71 yrs and mean 25(OH)D = 22.5 ng/ml (56 nmol/L); using quadratic and piecewise logistic regression)

Dawson-Hughes B. J Clin Endocrinol Metab 2022; 107, e1932–37.

Dietary protein intake Association with lean mass by DXA (2066 men and women age 70-79; 3-yr follow-up; Health ABC)

Houston DK. Am J Clin Nutrit 2008;87:150-5.

Cochrane review of exercise and falls (81 RCTs in 19,684 participants)

Exercise (all types) ↓ risk of falls (all falls) by 23% ↓ risk of falling (≥1 falls) by 15% ↓ risk of injurious falls by 39%

Balance and functional exercise ↓ risk of falls (all falls) by 24% ↓ risk of falling (≥1 falls) by 13% (strong evidence)(strong evidence)(low certainty)

(strong evidence)
(strong evidence)

Tai Chi ↓ risk of falls (all falls) by 19% ↓ risk of falling (≥1 falls) by 20%

(low-certainty evidence)
(high-certainty evidence)

Sherrington C. Cochrane Database Syst Rev 2019;21.

Research gaps and opportunities

<u>Bone</u>

- Identify women at fracture and increase use of effective interventions
- Adequate nutrition (Ca + vitamin D, protein) and exercise
- Develop and validate effect of senolytic agents

Muscle loss/fall prevention

- Standardize the definition of sarcopenia
- Develop FDA-approved pharmacotherapies, senolytics
- Assess GH agonists to reverse loss in *pulsatile* GH + IGF-1
- Determine mechanism by which vitamin D affects fall risk and identify optimal vitamin D levels to prevent falls
- Optimize protein nutrition and safe and effective exercises