

Radiology Perspective: Diagnostic Evaluation for MCD Tests

Stella Kang, MD, MSc

Associate Chair, Population Health Imaging and Outcomes Associate Professor Department of Radiology Department of Population Health NYU Grossman School of Medicine

DISCLOSURES

- Royalties from Wolters Kluwer for unrelated work; honoraria for editorial board work (American Roentgen Ray Society) and educational programming (Radiological Society of North America)
- Grant funding support from the NIH/NIDCR (R01DE030169, S. Kang), NIH/National Cancer Institute (K07CA197134, K07197134-05S1S1, R01CA262375, S. Kang)

Test	Technology	Organ System or Disease									Di	sea	Size of sample; number with cancer*	Overall sensitivity and specificity (%, 95% Cl)	Reported sensitivity for stage I, II cancers respectively (%, 95% Cl)				
		Bladder	Breast	Colorectal	Esophagus	Head/neck	Kidney	Leukemia	Lymphoma	Liver	Lung	Ovary	Pancreas	Prostate	Stomach	Uterus			
PanSEER (26)	Methylation																828; 414	95.0 (89.0-98.0), 96.1 (92.5-98.3)	N/A
CancerSEEK ^{a, b} (13, 15)	Mutations, proteins																1,817; 1,005		43 (30-58), 73 (62-84)
Galleri ^d (18)	Methylation																4,077; 2,823	76.3 (74.0-78.5), 99.5 (99.0-99.8)	16.8 (14.5-19.5) 40.4 (36.8-44.1)
DELFI ^b (57)	DNA frage															_		73 (67-79), 98° (N/A)	68 (52-82), 72 (62-80)
ThromboSeq ^{b,f} (58)	RNA Mutation																	64 (61-66), 99 (95-100)	46 (34-59), 47 (38-57)
MCDBT-19 (59)	Methylation																1,050; 505	69.1 (64.8-73.3), 98.9 (97.6-99.7)	35.4 (26.6-45.0) 54.5 (43.6-65.2)
SRFD-Bayes ^h (60)	Methylation																1,700; 1,372	92.1, 99.5°	N/A
lvyGene ^{b,h} (61)	Methylation																197; not reported	84 (75-93), 90 (85-95)	N/A

 Translation is the process of turning observations in the laboratory, clinic and community into interventions that improve the health of individuals and the public — from diagnostics and therapeutics to medical procedures and behavioral changes.

Three Facets for Discussion

- Downstream implications of MCD test performance on diagnostic workup and resolution
- Systems-level access and health system costs for diagnostic evaluation
- The problem of unrelated imaging findings: "the incidentaloma"

Resolving MCD results given suboptimal performance

Resolve the result: 1) is there a tumor? 2) If it's unclear from the single confirmation test, must be further evaluated.

- Could involve another test (invasive or non-invasive, e.g., endoscopy) or biopsy if there is a visible lesion
- Could also involve monitoring with a repeat imaging test after some time

How should the MCD be evaluated in trials and in practice?

- As a new testing regimen where there is no current screening test
- As a new test if an existing test is suboptimal due to performance, or due to availability or patient acceptability
- As supplemental information
- Will require careful measurement of performance characteristics, time to resolution, and clinical benefits and harms

Problems

- Patients in rural settings, safety net systems may not have easy access to PET scans, PET-CT scans, or MRI.
- Ultrasound and CT have less sensitivity and specificity for some cancers depending on organ system and particularly in early stage

Incidental Findings: Prevalence

Imaging modality	Approximate % cases with IFs
Brain MRI	About 10%
CT Colonography	10-20%
Low Dose Chest CT for lung cancer screening	50%
Chest CT (not lung cancer screening)	19%
Abdomen/pelvis CT	40-70%
Lumbar spine CT	40%

- Some older subpopulations: virtually all patients have IFs
 - About 20% overall may be actionable, needing more diagnostic testing or clinical visits to resolve
 - At least 15% result in consultation with a specialist
- Has led to hesitancy to recommend CT-based cancer screening
- Represent a wide range of risks to patients, with potential for both under- and over-management

Thyroid nodules: >50% prevalence in adults >40 years of age

Lung nodules: ~1-1.5 million per year

Solid liver lesions: 6% prevalence

Gallbladder polyps: 4-13% patients

Adrenal nodules: 4-8% prevalence on CT

> Kidney cancers: 2-3x incidence from 1970s-2010

... And pancreatic cystic lesions, adnexal lesions, borderline enlarged lymph nodes, small cerebral aneurysms, pineal cysts, pituitary adenomas, bone lesions, etc

Biopsy proven papillary thyroid carcinoma

Conclusion

- Need careful accounting of diagnostic yield of the MCD itself (separate from the entire diagnostic pathway)
- Separate characterization of imaging findings that are unrelated (incidentalomas)
- Understand downstream costs and potential for bottlenecks for underserved patients
- Impact of implementation should be compared against most relevant comparator technologies and approaches

References

Mahesh M, Ansari AJ, Mettler, Jr, FA. Patient Exposure from Radiologic and Nuclear Medicine Procedures in the United States and Worldwide: 2009–2018. Radiology 2023; 307(1):e22126.

Schrag D, Beer TM, McDonnell CH, 3rd, Nadauld L, Dilaveri CA, Reid R, et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet. 2023;402(10409):1251-60.

Lennon AM, Buchanan AH, Rego SP, Choudhry OA, Elias PZ, Sadler JR, et al. Outcomes in participants with a false positive multi-cancer early detection (MCED) test: Results from >4 years follow-up from DETECT-A, the first large, prospective, interventional MCED study. J Clin Oncol. 2023;41(16).

Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499).

Exact Sciences. Our Expertise in Cancer Screening. Available at: https://www.exactsciences.com/Pipeline-and-Data/cancerguard/our-expertise. Accessed on November 1, 2023

Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-30.

Jørgensen T, Jensen KH. Polyps in the gallbladder. A prevalence study. Scand J Gastroenterol. 1990;25(3):281.

Nguyen XV, Davies L, Eastwood JD, Hoang JK. Extrapulmonary Findings and Malignancies in Participants Screened With Chest CT in the National Lung Screening Trial. J Am Coll Radiol. 2017 Mar;14(3):324-330. doi: 10.1016/j.jacr.2016.09.044. PMID: 28259326.

Kim DH, Kim SW, Basurrah MA, Lee J, Hwang SH. Diagnostic Performance of Six Ultrasound Risk Stratification Systems for Thyroid Nodules: A Systematic Review and Network Meta-Analysis. AJR Am J Roentgenol. 2023 Jun;220(6):791-803. doi: 10.2214/AJR.22.28556. Epub 2023 Feb 8. PMID: 36752367.

Nicholson BD, Oke J, Virdee PS, Harris DA, O'Doherty C, Park JE, et al. Multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales (SYMPLIFY): a large-scale, observational cohort study. Lancet Oncol. 2023;24(7):733-43.

Neal RD, Johnson P, Clarke CA, Hamilton SA, Zhang N, Kumar H, et al. Cell-Free DNA-Based Multi-Cancer Early Detection Test in an Asymptomatic Screening Population (NHS-Galleri): Design of a Pragmatic, Prospective Randomised Controlled Trial. Cancers (Basel). 2022;14(19).

Kang SK, Gulati R, Moise N, Hur C, Elkin E. Multi-Cancer Early Detection Tests: State of the Art and Implications for Radiologists. Radiology; In press.

stella.kang@nyulangone.org