
EXPLORESPACE TECHNOLOGY DRIVES EXPLORATION

Strategic Planning Process Moving Forward

Alesyn Lowry | Jonathan Bowie | Michelle Munk | Angela Krenn | Cris Guidi | Space Technology Mission Directorate | 10.25.2024

STMD Strategic Planning Process

Goals

Connection Scores Process

Assessing the relevance of projects to solving shortfalls provides a few benefits

- 1. Provides a value statement for projects with regard to shortfalls
- 2. Assess areas of heavy investment vs light investment toward each shortfall
- 3. Find shortfalls without any investment to be prioritized
- STMD is currently evaluating the level of connection of each project to the shortfall(s)*
- Initially using a few projects as forerunners to refine the process: HPSC, VSAT, SEP, DRACO, VERS HIAD
- Current Process:
 - Both the Subject Matter Expert and Program/Project provide score and justification
 - Final adjudication provided by STMD Front Office
 - Product will be a heatmap depicted on previous chart

*[Early Stage Projects not included in this assessment]

Example Projects

Priority	Avg Score	Shortfall ID (blue text if top 3 in category)	Category	SEP Conn Scores	VSAT Conn Scores	VERS HIAD Conn Scores
2	7.612	1596: High Power Energy Generation on Moon and Mars Surfaces	Power		4	
8	7.168	709: Nuclear Electric Propulsion for Human Exploration	Propulsion: Nuclear	2		
19	6.804	1558: High-Rate Communications Across The Lunar Surface	Communication and Navigation		1	
28	6.592	1568: Entry Modeling and Simulation for EDL Missions	Entry Descent and Landing			5
36	6.415	610: Solar Electric Propulsion - High Specific Impulse	Propulsion: Non-Nuclear	2		
37	6.383	1563: Aerocapture for Spacecraft Deceleration and Orbit Insertion	Entry Descent and Landing			3
41	6.275	1430: Small Spacecraft Propulsion	Small Spacecraft	1		
42	6.267	1588: Protect Earth from Destructive Natural Impacts (Planetary Defense)	Miscellaneous	2		
43	6.244	1565: Assessment and Validation Capabilities for Integrated Precision Landing Systems	Entry Descent and Landing			1
47	6.220	844: Passive Dust Mitigation Technologies for Diverse Applications	Dust Mitigation		2	
56	6.136	1047: Active Dust Mitigation Technologies for Diverse Applications	Dust Mitigation		1	
69	5.932	1431: Access Beyond LEO for Small Spacecraft	Small Spacecraft	1		
71	5.922	611: Sub-kW and kW Class Electric Propulsion Systems	Propulsion: Non-Nuclear	2		
79	5.825	1583: Produce propellants and mission consumables from extracted in-situ resources	ISRU		2	
122	5.044	705: Low Power Nuclear Electric Propulsion	Propulsion: Nuclear	2		
126	5.016	544: Solar Electric Propulsion to Support Orbital Platforms	Propulsion: Non-Nuclear	5		
131		1564: Aeroshell In-Situ Flight Performance Data During EDL	Entry Descent and Landing			5
132	4.916	767: Advanced designs for lightweight inflatable surface elements	Advanced Materials and Structures			2
146	4.676	1567: Entry Capabilities for Small-Scale and Commercial Spacecraft	Entry Descent and Landing			5
			Excavation Construction and			
148		617: On-surface robotic assembly of vertical structures	Outfitting		2	
150		1408: Advanced deployable load-bearing structures	Advanced Materials and Structures		5	1
		513: Robotic Assembly and Construction of Modular Systems for Sustained In-Space				
153		Infrastructure	ISAM and RPOC		2	
173		612: In-Space Diagnostics for Electric Propulsion	Propulsion: Non-Nuclear	4		
181	3.881	1572: Performance-Optimized Low-Cost Aeroshells for EDL Missions	Entry Descent and Landing			3

NASA

Project: ULA Vulcan Engine Reuse Scale (VERS) HIAD Technology Demonstration

Project Description

The company will continue to evolve a proven Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology design. ULA will develop a larger 10-meter HIAD that leverages a two-piece structure to enable effective load distribution for even larger inflatable decelerators.

Anticipated Benefits

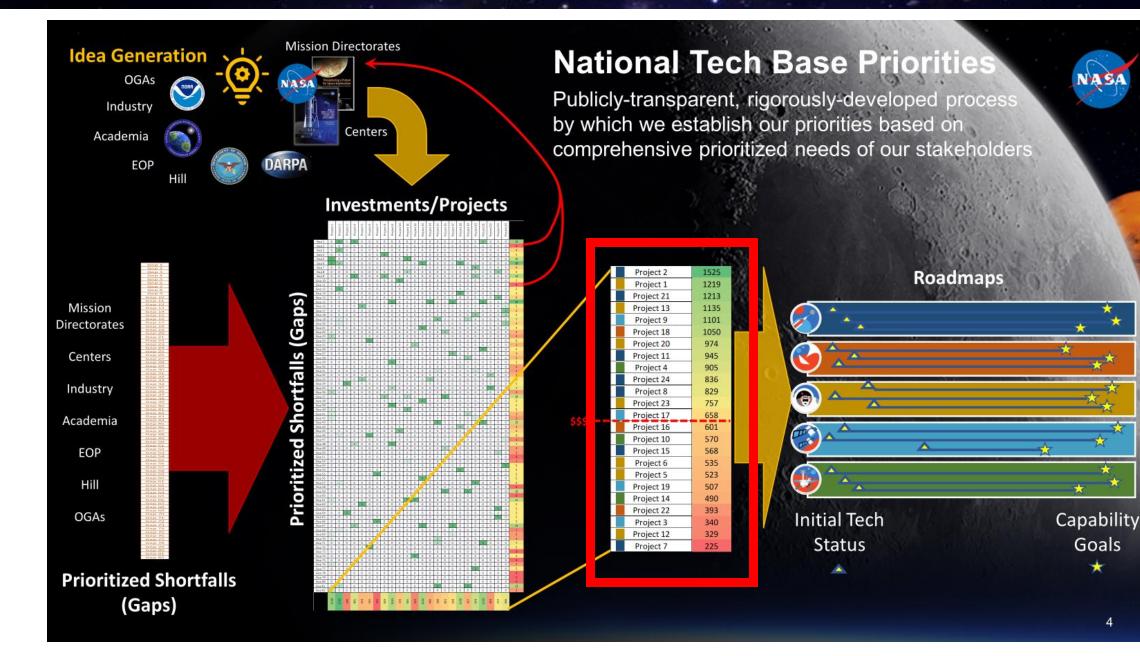
VERS will provide large scale HIAD risk reduction and maturation for flight applications.

- Prove out the manufacturing process and develop a solid supply chain
- Expand current HIAD testing program to burn down risk of scaling up the HIAD diameter
- •Investigate HIAD enhancements to increase load capability and L/D

Shortfall: AMSC-767: Advanced designs for lightweight inflatable surface elements

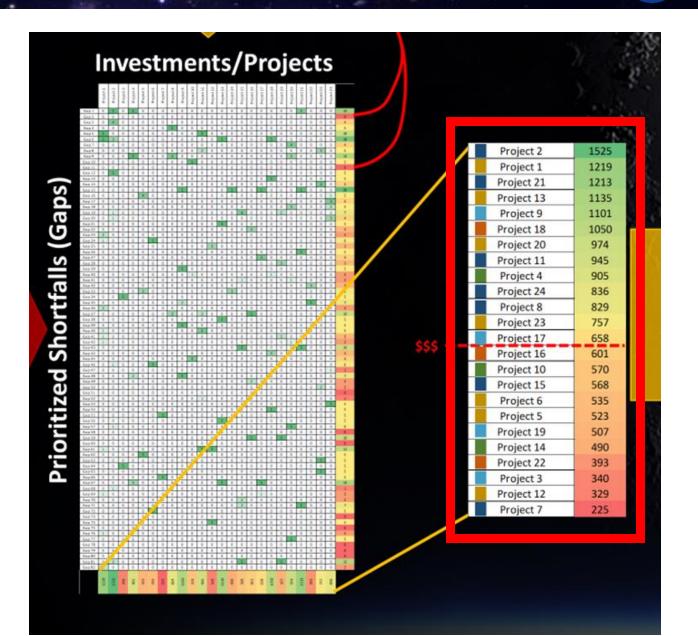
Shortfall Description

Inflatable softgoods structures can provide greatly enlarged living volumes for crews on extended exploration missions with minimal launch/landing mass and volume. Large inflatable surface elements include habitats and ISRU commodity storage tanks. Inflatable softgoods can also be used to provide small volume elements such as pressurized transfer tunnels, inflatable airlocks, suitport enclosures, flexible dust tolerant hangars, rover covers or garages, etc. This shortfall includes the design, analysis, and test of these advanced inflatable designs. This technology can be utilized to provide needed systems for light weigh habitable elements of surface habitat and be delivered in a small launch/landing package.


Shortfall Author Score: 2

Project Management Score: 3

Final Score: 2 - Investment indirectly contributes to gap closure. Justification: The packaging involved in the HIAD test will be specific to that usage. The use case for surface inflatable elements will vary greatly on the pressures, packaging, and length of usage time. The lessons learned from the HIAD will benefit this shortfall closure indirectly.


STMD Strategic Planning Process

Investment Prioritization Process

- Goal: Provide a quantifiable prioritization methodology to evaluate investments based on available credible data
- STMD is investigating various approaches of a repeatable methodology on evaluating:
 - Proposed new investments
 - Existing investments, for continuation consideration
 - Ultimately enable decision on use of limited annual funding available
- Data Sources
 - Inaugural STMD Shortfall Rank List
 - Project Connection Scores
 - Other Programmatic data
- **Desired Outcome:** Utilize objective measures to evaluate Return on Investment

"Technical Benefit" = Sum of (Connection Score x Inverse Rank of Shortfall)

Integrated Rank	Avg Score	Shortfall ID	Category
1	8.1	1618: Survive and operate through the lunar night	Thermal Management Systems
2	7.6	1596: High Power Energy Generation on Moon and Ma	Power
3	7.4	1554: High Performance Onboard Computing to Enable	Avionics
4	7.4	1557: Position, Navigation, and Timing (PNT) for In-Or	Communication and Navigation
5	7.2	1545: Robotic Actuation, Subsystem Components, and	Autonomous Systems and Robotics
6	7.2	1552: Extreme Environment Avionics	Avionics
7	7.2	1519: Environmental Monitoring for Habitation	Advanced Habitation Systems
8	7.2	709: Nuclear Electric Propulsion for Human Exploration	Propulsion: Nuclear
9	7.1	1304: Robust, High-Progress-Rate, and Long-Distance A	Autonomous Systems and Robotics
10	7.1	1520: Fire Safety for Habitation	Advanced Habitation Systems
11	7.1	1531: Autonomous Guidance and Navigation for Deep	Autonomous Systems and Robotics
12	7.0	1591: Power Management Systems for Long Duration L	Power
13	7.0	702: Nuclear Thermal Propulsion for Human Exploration	Propulsion: Nuclear
14	7.0	1559: Deep Space Autonomous Navigation	Communication and Navigation
15	7.0	1527: Radiation Countermeasures (Crew and Habitat)	Advanced Habitation Systems
16	6.9	1526: Radiation Monitoring and Modeling (Crew and H	Advanced Habitation Systems
17	6.9	879: In-space and On-surface, Long-duration Storage o	Cryogenic Fluid Management
18	6.8	1548: Sensing for Autonomous Robotic Operations in O	Autonomous Systems and Robotics
19	6.8	1558: High-Rate Communications Across The Lunar Sur	Communication and Navigation
20	6.8	1626: Advanced Sensor Components: Imaging	Sensors and Instruments
21	6.8	792: In-space and On-surface Transfer of Cryogenic Flu	Cryogenic Fluid Management
22	6.7	1569: High-Mass Mars Entry and Descent Systems	Entry Descent and Landing
23	6.7	1525: Food and Nutrition for Mars and Sustained Lunar	Advanced Habitation Systems
24	6.7	1571: Navigation Sensors for Precision Landing	Entry Descent and Landing
25	6.7	1573: Terrain Mapping Capabilities for Precision Landi	Entry Descent and Landing
26	6.7	1562: Advanced Algorithms and Computing for Precision	Entry Descent and Landing
27	6.6	1597: Power for Non-Solar-Illuminated Small Systems	Power
28	6.6	1568: Entry Modeling and Simulation for EDL Missions	Entry Descent and Landing
29	6.6	1516: Water and Dormancy Management for Habitatio	Advanced Habitation Systems
30	6.6	1524: Crew Medical Care for Mars and Sustained Lunar	Advanced Habitation Systems
31	6.6	1546: Robotic Mobile Manipulation for Autonomous La	Autonomous Systems and Robotics
32	6.5	1592: High Power, Long Distance Energy Transmission	Power
33	6.5	1542: Metrics and Processes for Establishing Trust and	Autonomous Systems and Robotics
34	6.4	1390: Power and Data Transfer in Dusty Environments	Power
35	6.4	1532: Autonomous Planning, Scheduling, and Decision	Autonomous Systems and Robotics
36	6.4	610: Solar Electric Propulsion - High Specific Impulse	Propulsion: Non Nuclear
37	6.4	1563: Aerocapture for Spacecraft Deceleration and Orb	Entry Descent and Landing
38	6.3	1560: High-Rate Deep Space Communications	Communication and Navigation
39	6.3	1194: Prediction Modeling of Cryogenic Fluid Dynamic	Cryogenic Fluid Management
40	6.3	498: Broad and dependable supply chain for space-qua	ISAM and RPOC
41	6.3	1430: Small Spacecraft Propulsion	Small Spacecraft
42	6.3	1588: Protect Earth from Destructive Natural Impacts (Miscellaneous

43	6.2	1565: Assessment and Validation Capabilities for Integ Entry Descent and Landing

Gap Inte	Investment Little	Connection score
Surface Berthing and Docking Mechanisms	On-Orbit Servicing, Assembly, and	1 - Investment minimally contributes to gap closure.
Excavation of granular (surface) regolith mate	ria Infrastructure Manufacturing with	10 - No connection between proclosure and investment.
Excavation of granular (surface) regolith mate	ria Fission Surface Power	0 - No connection betweet gap insure and investment.
excavation of granular (surface) regolith mate	eria ISRU Pilot Excavator	5 - Investment direct & manuel , contributes to gap closur
xcavation of granular (surface) regolith mate	eria Motors for Dusty & Extremely Cold	3 - Investment tribulis to gap closure.
excavation of granular (surface) regolith mate	eria Polar Resources Ice Mining Experi	n2 ment i a ctly contributes to gap closure.
Excavation of granular (surface) regolith mate	eria Ultra Fast Proximity Charging	Investment of noutes to gap closure.
Excavation of granular (surface) regolith mate	eria Fundamental Regolith Proprties,	F3 west ont contributes to gap closure.
Modular design for in-space installation	On-Orbit Servicing, Assembly and	4 - Menent directly & strongly contributes to gap closure
Upgrade or install instruments on large space	ot On-Orbit Servicing, As bly, od	4 - Investment directly & strongly contributes to gap closure
Excavation of hard/compacted/icy regolith ma	ate Fission Surface Power	0 - No connection between gap closure and investment.
excavation of hard/compacted/icy regolith ma	ate Polar Resource N In Aperi	n 4 - Investment directly & strongly contributes to gap closure
Excavation of hard/compacted/icy regolith ma	ate ISRU Pilot & avat	4 - Investment directly & strongly contributes to gap closure
Excavation of hard/compacted/icy regolith 📹	te My ors Do y & Extremely Cold	13 - Investment contributes to gap closure.
Excavation of hard/compacted/icy regolith ma	UI Fas roximity Charging	2 - Investment indirectly contributes to gap closure.
Excavation of hard/compacted/icy rego	ati uno ental Regolith Properties,	F3 - Investment contributes to gap closure.
Regolith and resource delivery system	sion Surface Power	0 - No connection between gap closure and investment.
Regolith and resource devery estem	Motors for Dusty & Extremely Cole	d 3 - Investment contributes to gap closure.
Regolith and resource delivery setem	Ultra Fast Proximity Charging	2 - Investment indirectly contributes to gap closure.
Regolith and resources system	ISRU Pilot Excavator	5 - Investment directly & markedly contributes to gap closur
On-Surface In-situ Construction of Vertical Str	uctInfrastructure Manufacturing with	12 - Investment indirectly contributes to gap closure.
On-Surface In-situ Const uction of Vertical Str	uct On-Orbit Servicing, Assembly, and	2 - Investment Indirectly contributes to gap closure.
On-Surface In-situ Construction of Vertical Str	uct Vertical Solar Array Technology	0 - No connection between gap closure and investment.
On-Surface In-situ Construction of Vertical Str	uct Moon-to-Mars Planetary Autonom	c1 - Investment minimally contributes to gap closure.
On-Surface In-situ Construction of Vertical Str	uctFission Surface Power	2 - Investment indirectly contributes to gap closure.
Broad and dependable supply chain for space	-qu On-Orbit Servicing, Assembly, and	5 - Investment directly & markedly contributes to gap closur

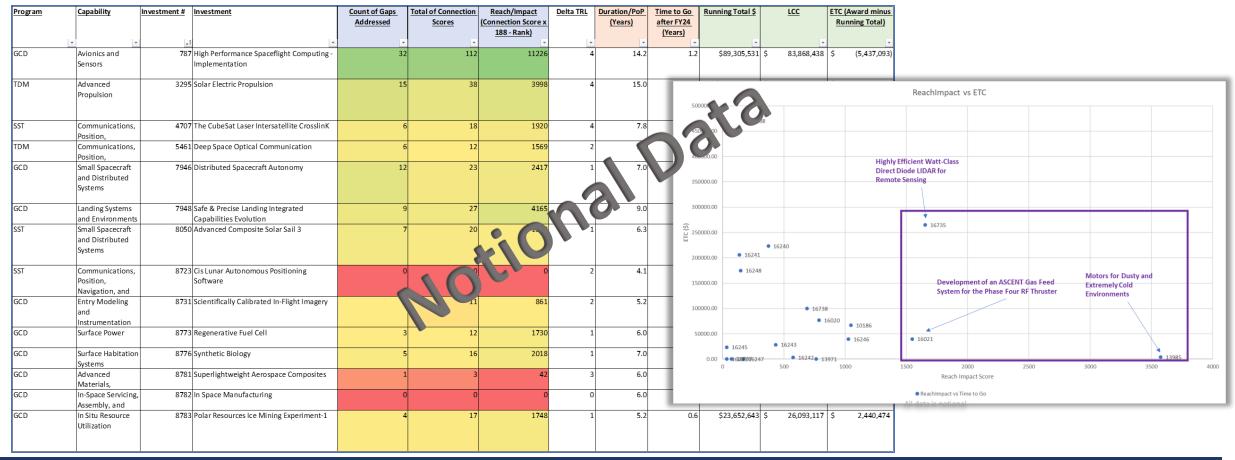
	Project 2	1525
	Project 1	1219
	Project 21	1213
	Project 13	1135
	Project 9	1101
	Project 18	1050
	Project 20	974
	Project 11	945
	Project 4	905
	Project 24	836
	Project 8	829
	Project 23	757
	Project 16	601
	Project 10	570
	Project 15	568
	Project 6	535
	Project 5	523
	Project 19	507
	Project 14	490
	Project 22	393
	Project 3	340
	Project 12	329
	Project 7	225

Investment-to-Shortfall Mapping Example

Project Composite Score = Sum of (Connection Score x Inverse Rank of Shortfall)

All data is notional

Applying the RICE equation to fit the STMD Investment Prioritization activity



- Reach: Shortfall rank
- Impact: Connection Score how well the investment closes the shortfall
- **<u>Confidence of Investment</u>** Related to the development <u>complexity</u> and <u>probability</u>
 - For complexity, potentially use GCD's Advancement Degree of Difficulty (AD²) process
 - For probability,
 - May start with TRL "distance" (delta TRL: 3-6) and the given project start and end date in SPAR to produce an output to get the confidence of project meeting that schedule
- **<u>Effort</u>** Time and money it takes to get to maturity
 - Life Cycle Cost (LCC) or Estimated to Complete (ETC)
 - Period of Performance (PoP) or Time Remaining

2nd Approach: Additional Investment Prioritization Attributes

• Alternatives to a single numerical value:

- Sortable/Filterable Tables with additional programmatic Figures of Merit
 - Sort and filter tables for specific attributes of interest
- Scatter Plots
 - Scatter Plots enable examination of quadrants of interest for two attributes at a time

Enables greater visualization of strengths/weaknesses that may get lost in a single equation

3rd Approach: Combining Technical Benefit and Programmatic Metrics

Modified National Research Council (NRC)* Method

• Developing methodology for combining the Technical Benefit score with other programmatic attributes

- Programmatic attributes can include:
 - Cost Life Cycle Costs, Estimated Costs to Complete
 - Duration Total investment schedule, estimated time to complete
 - Risk- Likelihood of success (e.g., "Advancement Degree of Difficulty" [AD2] metric)
 - Maturity Expected TRL advancement
- Exploring weighting options
 - For example, NRC weighted Technical Benefit as 2/3 of total score, and Programmatics 1/3
 - Can assign additional weights within Programmatics (e.g., Cost=40%, Risk=20%, Schedule=20%, Maturity=20%)
- Results in a single, combined score for prioritization

Technical Benefit –			Programmatics (Investment Risk, Cost, & Schedule)				=		Prioritized Investments	
Project 2	1525							_	Project 1	1121
Project 2 Project 1	1219		Scale	Risk	Category		Success Chance		Project 21	1089
	1219		9	100%	Chaos		Almost Certain Failure	_	Project 2	1005
Project 21	1135		8	80%	Unknown Unkno		High Likelihood of Failure	_	Project 13	1001
Project 13 Project 9	1135		7	70%	Unknown Unkno		High Likelihood of Failure	_	Project 20	989
· · · · · · · · · · · · · · · · · · ·			6	50%	Unknown Unkno		High Likelihood of Failure	_	Project 18	945
Project 18	1050 974		5	40% 30%	Known Unknow Well Understo		Probably Will Succeed Almost Certain Success	-	Project 9	936
Project 20			3	20%	Well Understo		Almost Certain Success	_	Project 20	901
Project 11	945 905		2	10%	Well Understo		Almost Certain Success	-	Project 11	874
Project 4	836		1	0%	Well Understo		Guaranteed Success	-	Project 4	841
Project 24				-,-					Project 24	808
Project 8	829								Project 6	755
Project 23 Project 16	Project 23 757 Project 16 601								Project 5	721
Project 10	570			Scheo	ماييا		Cost		Project 8	696
Project 15	568			Schet	luie		COST		Project 23	621
Project 6	535		< 2 years		ears		<\$5M		Project 16	545
Project 5	523			•					Project 10	521
Project 19	507		2-4 years		ears		\$5M - \$50M		Project 15	481
Project 19	490		•				65014 605014		Project 19	435
Project 22	393			4-8 ye	ears		\$50M - \$250M		Project 22	361
Project 3	340		8+ years		arc		\$>250M		Project 14	320
Project 12	329			от уе	ars		J-230101		Project 7	210
Project 7	225								Project 3	184

Project 12

* NASA Space Technology Roadmaps and Priorities

Next Steps

• STMD's Strategic Planning process is still evolving.

- Plan to utilize lessons learned to inform next Shortfall survey effort.
- STMD recognizes the need for a process informed by objective data (incl. shortfall results) to inform investment decisions, but need to determine how numerical of an approach to take.
- Striving for a prioritization methodology that is intuitive, objective, repeatable based on available credible data.
- Plan to continue refining and collecting a complete dataset and develop a plan to maintain data integrity.
 - Complete the Connection Scoring for active investments to the 187 shortfalls.
 - Determine what additional complexity/probability of success data to collect
 - Validate ETC/LCC data.
 - Potentially pursue "urgency" attribute, when roadmaps are available.
- Intend to further evaluate the RICE equation
 - Look at subsets of data and scatter plots to gain further insights and compare attributes.
 - Example Scatter plots:
 - Technical Benefit vs Cost
 - Technical Benefit vs Schedule
 - Technical Benefit vs Combined Programmatic Score

Regardless of approach, will still need "human in the loop" for decision-making.