

Impact of commercial Radio Occultation observations in global weather forecasting

Dr. Lidia Cucurull

Director, Quantitative Observing System Assessment Program (QOSAP)

NOAA

Objective

- Evaluate quality of commercial RO data
 - NESDIS Commercial Data Program (CDP)
- Quantify impact of commercial RO data in global numerical weather prediction
- Relative impact to a US Government RO source (COSMIC-2)
- Results can be found in *Cucurull et al., 2025 (under review at WAF)*
- Commercial RO is operationally assimilated at NOAA

NESDIS Commercial Data Program (CDP)

Delivery Order	Provider	RO Profiles per	Period of
(DO)		day	Performance
DO1	Spire	500	Dec 2020 - Jan
	GeoOptics	500	2021
DO2	GeoOptics	1,300	March - Sept 2021
DO3	Spire	3,000	Sep 2021 - March
			2022
DO4	GeoOptics	500	March 2022 - Jan
			2023
	Spire	5,500	
DO5	Spire	3,300	Jan - July 2023

Department of Commerce // National Oceanic and Atmospheric Administration // 3

Methodology

- Each DO was evaluated independently
- Slightly different version of NOAA's global data assimilation and forecast system
- RO forward operator: NCEP's Bending Angle Method (NBAM)
- GDAS/GFS system (NOAA's operational model) at research resolution
- Time period: 2 August 2022 30 September 2022 (DO4)

Distribution of RO observations

Department of Commerce // National Oceanic and Atmospheric Administration // 5

Experiments (number of profiles/day)

- NORO: All operational data except RO
- **COSMIC2**: NORO + COSMIC-2 (5,500)
- **SPIRE**: NORO + Spire (5,500)

ž

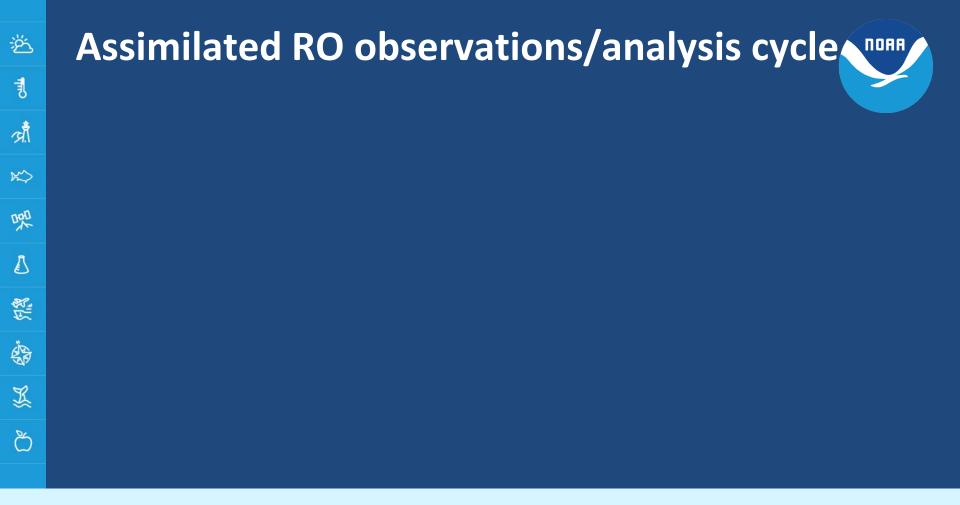
Ð

औ

x

咒

 \square


12

ġ

X

r

- **COSMIC2+SPIRE**: NORO + Spire (5,500) + COSMIC-2 (5,500)
- ALLRO: NORO + COSMIC-2 (5,500) + Spire (5,500) + GeoOptics (500) + MetOP (1,200) + other missions (400)

Ä

Department of Commerce // National Oceanic and Atmospheric Administration // 8

NOAA

COSMIC2: assimilates COSMIC-2 only

Spire: assimilates Spire only

- Overall reduction of RMSE with COSMIC-2 observations
 - D Impact is larger in the tropics
- Reduction in RMSE extends to longer forecast lead times and vertical pressure levels in Spire
 - Slight increase of geopotential heights RMSE

COSMIC2+Spire: assimilates COSMIC-2 and Spire only

ALLRO: assimilates all RO, including **COSMIC-2** and Spire

Best results when both COSMIC-2 • and Spire are assimilated.

Conclusions

- COSMIC-2 and Commercial RO Data show similar statistics.
- Quality of RO commercial data is sufficient for current NWP applications.
- Global RO distribution is needed to improve NWP globally.