# Using the National Health Interview Survey Linked Mortality Files to Train and Assess the Performance of Machine Learning Prediction Models to Predict All-Cause Mortality and Interpret Model Predictions using Explainable Al

Orlando Davy, MPH; Frances McCarty, PhD; Yulei He, PhD; Cordell Golden, MPS

#### Background

- NCHS Data Linkage Program produces high-quality linked data files that can be used for a wide-range of health-related research topics and data science applications
- Machine learning (ML) prediction models can be used to predict outcomes with high predictive accuracy, but require quality and accurate data for training
- Explainable AI (XAI) involves visual global and local methods used to enhance the understanding of complex ML models overall and make model predictions interpretable

#### **Objectives**

- Evaluate selected ML prediction models using linked data as the training data and validation source to assess model performance for predicting all-cause mortality
- Use XAI to interpret model results

#### Methods

#### **Data Source**

- Public-use 2000 2001 National Health Interview Survey (NHIS) Linked Mortality Files (LMF) with mortality information through 2019
- IPUMS NHIS harmonized data used for the analysis
- Linkage eligible NHIS sample adult respondents with complete information for selected predictor variables (n = 46,949)

#### Data Analysis

- Analysis performed using R v 4.3.1, package included: caret v6.0-94, pdp v0.8.1, lime v0.5.3, and yardstick v1.2.0
- Selected ML prediction models: Random Forest (RF), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Naïve Bayes (NB)
- XAI methods used: Variable Importance Plots (VIP); Partial dependence plots (PDP), LIME Local Features Plot
- Initial feature set included 20 predictor variables plus one target (outcome) variable
- Only records with complete information for all predictor variables were included Training set: 2000 NHIS LMF (n = 23,210)
- Validation set: 2001 NHIS LMF (n = 23,739)

#### Steps:

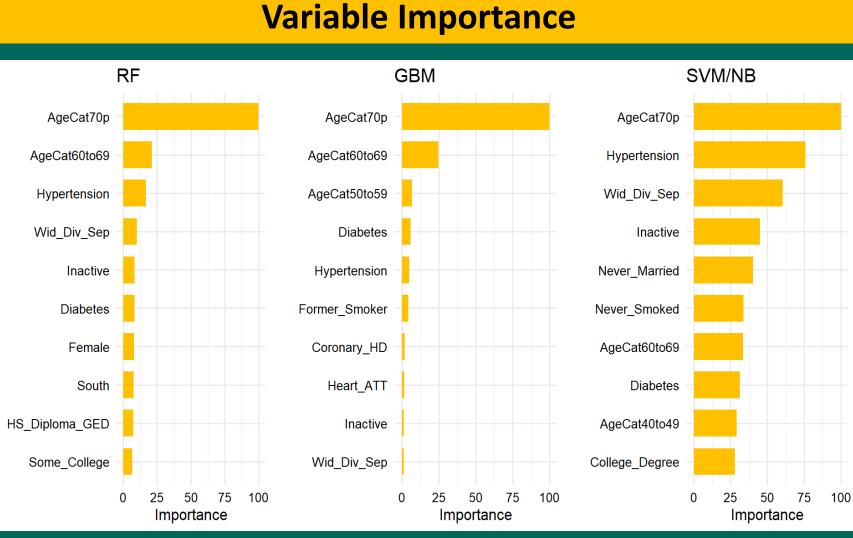
- 1. VIP used to identify ten most important variables (2000 NHIS LMF)
- 2. ML models trained using most important variables (2000 NHIS LMF)
- 3. Trained models were re-run using 2001 NHIS LMF
- 4. Model results compared to outcome from 2001 NHIS LMF
- 5. Precision-Recall curves (PR-AUC) used to visually assess model performance
- 6. Additional metrics evaluated to assess performance: Misclassification Error, Precision, Recall, Balanced Accuracy, F1-Score, and Processing Time

#### Results

- Older age (70+ years), hypertension, diabetes, widow/divorced/separated, and inactivity were consistent top 10 predictors for all-cause mortality across all models
- The GBM model had the lowest error rate, highest F1-score and PR-AUC estimate
- SVM precision was greater compared to the other models, but had the lowest recall
- Processing time was reasonable across models, the NB model was the most efficient
- Partial dependence shows older age groups tend to have a more positive impact on predicting the correct class (Mortality = "Yes")

## CONCLUSIONS

 The ML models performed reasonably well when predicting all-cause mortality when trained with high-quality data

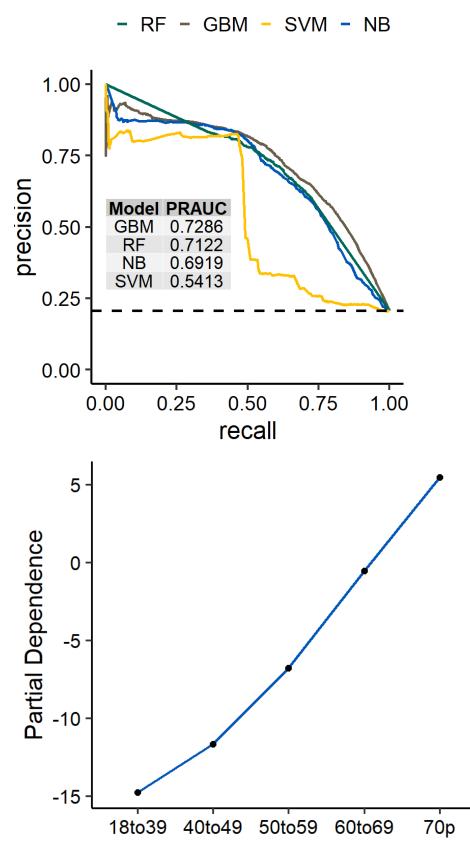

#### Limitations

- Only complete cases used for analysis
- Information for predictor variables derived from self-reports

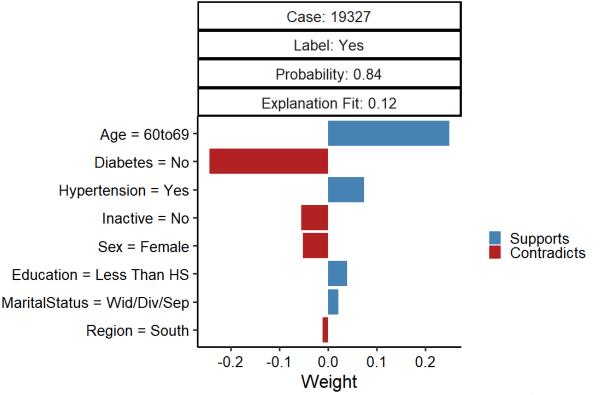
# **Target Variable\* and Feature Set**

| 1. Age                            | 12. Hy          |
|-----------------------------------|-----------------|
| 2. Sex                            | <b>13</b> . Dia |
| 3. Race and Ethnicity             | 14. Co          |
| 4. Education                      | 15. He          |
| 5. Marital Status                 | 16. He          |
| 6. Poverty to Income Ratio        | 17. Pla         |
| 7. Health Insurance               | <b>18</b> . Ba  |
| 8. Inactivity                     | 19. Ps          |
| 9. Smoking Status                 | 20. Re          |
| 10. Excessive Alcohol Consumption | <b>21.</b> Mo   |
|                                   |                 |

11. Body Mass Index




## **Performance Measures**


|                                | RF     | GBM    | SVM    | NB     |
|--------------------------------|--------|--------|--------|--------|
| <b>Misclassification Error</b> | 0.1305 | 0.1239 | 0.1320 | 0.1560 |
| Precision                      | 0.7304 | 0.7752 | 0.8262 | 0.6044 |
| Recall                         | 0.5826 | 0.5957 | 0.4562 | 0.7051 |
| Balanced Accuracy              | 0.7633 | 0.7723 | 0.7156 | 0.7926 |
| F1-Score                       | 0.6481 | 0.6648 | 0.5878 | 0.6509 |
| Process Time(min)              | 3.20   | 0.58   | 1.00   | 0.02   |

- ypertension
- iabetes
- oronary Heart Disease
- eart Condition
- eart Attack
- lace for Care
- arrier to health Care: Cost
- sychological Distress
- egion
- /lortality\*

## **Global Procedures**



## **An Example of a Local Procedure**



**CONTACT INFO:** odavy@cdc.gov