

Modeling multi cancer early detection: a tool to move between performance and outcomes

Jane Lange, PhD Cancer Early Detection Advanced Research Center (OHSU)

National Academy of Sciences, October 28, 2024

Conflicts of interest

- No conflicts of interest to report.
- Funding support from Cancer Early Detection Advanced Research Center (OHSU).

Acknowledgements

Multi-cancer Modeling Group (Fred Hutch and OHSU)

Ruth Etzioni, Fred Hutch

Roman Gulati, Fred Hutch Lukas Owens, Fred Hutch

Jane Lange, OHSU

Kemal Gogebakan, Fred Hutch

Ishfaq Ahmad, OHSU

What will be the population impact of MCED screening?

Test performance (e.g., Galleri test)

- High specificity (>99%)
- Sensitivity in clinically-detected patients
 - varies by cancer sites
 - highest for late stage disease.
- Per the PATHFINDER study, the positive predictive value was about 40% in a general population.

Huge gap between performance and population outcomes

Clinical trials

Modeling

- Well designed trials necessary to bridge the gap.
 - Expensive
 - Take years to yield results
- Without trials: models can get us closer.

Framework for modeling the benefits of MCED screening in a clinical trial

- Natural history models calibrated separately for each cancer site based on incidence data and user-provided mean overall and late pre-clinical latencies.
- Stage shift model used to project mortality outcomes.

Projecting the reduction in late stage disease

Natural history model

Superimposing screening

Individual

Reduction in late stage disease: single cancer

Drivers of stage shift

- Early stage sensitivity
- Detectable early stage pre-clinical duration (amongst progressive cancers)

Source: Lange 2024, CEBP

Expected reductions in late stage disease in a multi-cancer trial

Projected reduction in distant stage disease after 3 screens:

- 21-43% (assuming sensitivity= that of clinically diagnosed patients)
- 6-24% (assuming sensitivity=50% of that of clinically diagnosed patients)

Projecting mortality

Stage shift model for projecting mortality

Relationship between stage shift and projected mortality reduction: single cancers

Mortality implications of late stage disease reduction in MCED trial

We expect the relative mortality reduction to be 60% of the relative reduction in late stage disease (assuming common stage shift)

 Mortality reduction driven by cancer sites with the highest mortality in unscreened patients.

Summary and future directions

Modeling allows us to

- extract the maximal information from the limited data we have.
- learn about drivers of screening benefit and set expectations for MCED trials.
- explore the how projections relate to assumptions (inputs and structural assumptions).
- incorporate new data to inform model inputs.

Thank you!

Contact: langeja@ohsu.edu

Key Papers

Projecting the Impact of Multi-Cancer Early Detection on Late-Stage Incidence Using Multi-State Disease Modeling

Jane M. Lange¹, Kemal Caglar Gogebakan², Roman Gulati², and Ruth Etzioni^{2,3} CEBP 2024

Stage Shift as an Endpoint in Cancer Screening Trials: Implications for Evaluating Multicancer Early Detection Tests

Lukas Owens, Roman Gulati, and Ruth Etzioni CEBP 2022