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HOURGLASS CLIMATE

TOOLS
Modeling tools that facilitate responsible
Hourglass Climate is a US-based 501(c)3 PAREEL IENTNE P2 - one Ampas

quantification
nonprofit research organization .

Our mission 1is to strategically research the

safety and efficacy of mineral-based Ocean

Alkalinity  Enh ¢ (OAE) f b1 FIELD TRIALS
alinity nhhancement  ( ) for responsible Field trials that ground-truth the efficacy
carbon removal and climate impact at scale,and and safety of mCDR, with transparent data

sharing as a tenet of the work.
to disseminate our work for the public benefit.




MINERAL-BASED OAE

k3 .
Vesta PBC Vesta PBC Planetary Technologies

Technologies that use the dissolution of
natural or synthetic rocks and minerals to generate alkalinity in the ocean and

drive a net increase in atmospheric CO, storage in seawater

**mage of lake liming for example purposes only.
Conducted here not for the purposes of CDR.
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CDR QUANTIFICATION

Ameasure and mOdeI approaCh e Real-time counterfactual (ie.outside plume)

water e Alkalinity(and for some minerals,othertrace elements)can be measured
column directlyat addition site via sensors and/or bottle samples
o Demonstrated at multiple field trials

measure
e Suspended sediment and/orturbiditycan be measured bysensors and/or
bottle samples
o Demonstrated at multiple field trials

dissolved
load

(suspende
d

o Measurements collected via manned and unmanned vehicles

e Forpipe deployments,these measurements are continuous.For discrete
(boat)deployments,these measurements are hours to days

e Thetransport of solid phase in the water column,and transformation to
dissolved phase,can be modeled via a coupled particle transport +
dissolution model

o  Activeresearch

Vesta PBC



CDR QUANTIFICATION

A measure and model approach
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Preliminary Datg Leach et al. (in prep)

e  Short-lived (hours)but statisticallysignificant increases in

water column solid & dissolved phases

Vesta PBC



CDR QUANTIFICATION

A measure and model approach

e Applicable when :mineral dissolution timescale >particle settling
timescale (days — years)

seafloor ‘ ‘ ‘
e Real-time counterfactual (ie.controlsite)
measur [measure e  Alkalinity(and for some minerals,othertrace elements) can be measured
. directlyat seafloor via benthic flux chambers,discrete porewater samples
solid phase . . '
dissolved o Demonstrated at multiple field trials
(bedload load
sediment) | 7%/

e Bedload can be measured directlythrough bathymetry+discrete sample
collection (sediment grabs,cores), with novel proxies under development
(e.g.backscatter)

o Demonstrated at multiple field trials

e The transport of solid phase and transformation to dissolved phase can be
modeled via a coupled sediment transport +sediment reaction transport
model

o  Active research




CDR QUANTIFICATION

A measure and model approac
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Preliminary Dalg Cetiner et al. (in prep)
e Highlyresolvable measurements of mineralogy (e.g. XRD)

e Highlyresolvable dissolved phase signals of mineral
dissolution & carbonate system perturbation




CDR QUANTIFICATION

A measure and model approach 2 B, y w®s w
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Preliminary Dalg Cetiner et al. (in prep)
e  Signals persist on moderate (weeks to years) timescales

e  Eventuallyhowever,signals will fall below measurement
capability(detection limits)




CDR QUANTIFICATION
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A measure and model approach
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e Field data validation of modeled long timescale processes

1

e Example: DELFT3Dmodel of olivine berm redistribution

over lyear



CDR QUANTIFICATION

A measure and model approach
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Preliminary Datg Cole et al. (in prep)

e Field data validation of modeled long timescale
processes

e Example:RADI-Omodel of olivine dissolution &
alkalinity flux over lyear



CDR QUANTIFICATION
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Preliminary Dalg Cetiner et al. (in prep)

e Field data validation of modeled long timescale

processes

Example: RADI-Omodel of olivine dissolution &

carbonate system




ENVIRONMENTAL IMPACT

A measure and model approach

water

seafloor
column

Framework for Ecofoxicological Modeling of mCDR (FEMM)
Weighman et al. (in prep)

e ‘“eMRV’is an essential component of MRV

e FEMMis an actionable process for quantifying near field
ecotoxicological risk of m CDR projects

e FEMMdemonstrates howto combine lab & field data
with appropriate modeling approach(es)

e Suitable for solid and dissolved phases

e Based on environmentalrisk assessment (ERA)
approaches with widespread regulatory precedent

Start
Screening-Level
Risk A

o

Collect Chronic Toxicity Data for
Relevant Species

Data for at
Least 10
Species?

Evaluate Taxonomic
Completeness to Determine AF*

Would
Uncertainty be
Reduced by Data
Extrapolation?

Apply Appropriate Uncertainty
Factor(s)"

Fit SSD and Derive PNEC
PNEC= HC5/ AF

Compare PEC to PNEC and
Derive RQ
RQ= PEC/ PNEC

Expand Dataset with Experiments

Data Extrapolation

or

Low Species
Assemblage
Risk
Established

Low Species
Assemblage
Risk Not
Established

{Conduct Advanced 'I’-x--Spl:IﬂcE
i Risk Assessment (See Fig.8) |

Species of
Special
Concern?®

Screen for Sensitive Species
Species ECx< PEC

Conduct Advanced Species-
Assemblage
Risk Assessment (See Fig. 8)

Low Project
Risk
Established
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