Space Weather Roundtable, June 1-2, 2023

GDC Relevance to NOAA

National Environmental Satellite, Data, and Information Service Elsayed Talaat Director, Office of Space Weather Observations

NOAA use of GDC observations

- Atmospheric drag on spacecraft in LEO from measurements by GDC note the Office of Space Commerce within NOAA is charged with providing basic SSA data and STM services to commercial space operators especially due to the proliferation of commercial constellations.
- Radio propagation for communications, navigations, and surveillance note radio occultation from GDC's polar orbits complement COSMIC-2 low latitude orbits - assessing impacts to GPS system among others.
- Assessment of geomagnetic disturbances in LEO will enable space weather predictions of ground level technological events, e.g. GICs in the power grid among others.
- Assessing the radiation environment of LEO impacting spacecraft systems and human exposure.
- GDC has a real-time beacon and is working with both research and operations to optimize transmission content and latency.

GDC observations vs NOAA requirements

- GDC re-engineered the downlink from a daily scientific download to a space based near real-time broadcast via a commercial receiving network for partial observations needed for NOAA's space weather notification system.
- GDC has a real-time beacon and is working with both research and operations to optimize transmission content and latency; management has appointed a Deputy Project Scientist to specifically address space weather issues and GDC capabilities.
- NOAA requirements from missions like COSMIC-2 were cross referenced to GDC capabilities such as observations of magnetic field, neutral wind characteristics, I-T characteristics, total electron content and energetic particle populations and precipitation.
- From the IRB (Sept. 2022): GDC observations of I-T conditions will lead to "improvements in I-T models that are foundational to Space Situational Awareness and Space Weather prediction.

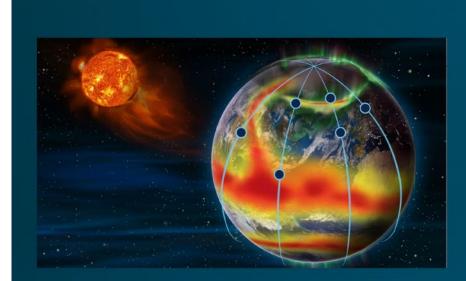
GDC Capabilities vs NOAA requirements

GDC Instrument Suite	NOAA Observation Requirements
Magnetometer (NEMESIS)	Magnetic Fields
Radio Occultation (PROFILE)	TEC, NmF2, hmF2
Atmosphere and lonosphere (MoSAIC)	Neutral Winds, I-T characteristics
Auroral Precipitation Experiment (CAPE)	Auroral Precipitation – particles, energy deposition, and auroral boundaries
Atmospheric Electrodynamics probe for	
THERmal plasma (AETHER); Thermal Plasma Sensor (TPS)	Electric fields
Radiation Environment Monitor (REM)	 Energetic particles

NOAA/NESDIS advice needed from Decadal Survey

- Concepts and plans for enhancements of capabilities
- Improved understanding of needed latency of notifications to customers; e.g. L1 observation products to electric power industry is nominally one hour or less
- Advice on operational platform systems in order to address critical observational gaps or potential gaps
- Advice on other agency tech demos on NOAA platforms
- Advice on research, tech demos from other agencies to advance understanding of Sun-Earth interactions and the cause and effect of space weather events
- Develop ways to assess and communicate the value proposition for space weather operational observations
- Advice on how to further develop applications and models that fully exploit observational data
- Advice on how operational observations can be used as part of the research infrastructure

Backups



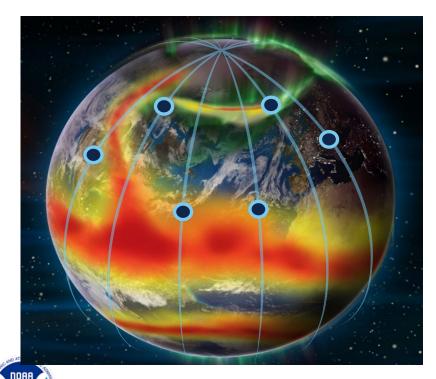
National Environmental Satellite, Data, and Information Service

GDC vs. COSMIC-2

	••• M 🖻	マント	0	📑 GD	OC-NOAArequ	irements _.	_v2		् प क्ष		, 0/		Conditional Formatting 🗸	Ħ.,	●●● ⋒₿₿ፇヾC		-	NOAArequire		0			પ જ
	Home Insert D	raw Pa	ge Layout	Formu	las Data	Review	View	💡 Tell me	년 Share				Format as Table V								fell me		년 Share
	- A	~ <u>=</u>		10 Y			ř 🗐	· 0.		V			Cell Styles V		Dacto Font Allonmore		Ť 🔯				,		
N N	Pasto Eo			umber				Editing		JI7 = X = Jx					Paste S Pont Alignmen	n Numb		Cell Styles 🗸		Cells	Editing		
N V	V	, and the second second			👿 Cell Styles 🗸	·		Luting		A	В	С	D E	F	D17 $\stackrel{\bullet}{\downarrow} \times \checkmark f_X$								
A C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	A17 A V	fr								1 Data Type	Threshold	Objective	PROFILE Expected performa	nce		B	C	D	F	F	6	н	
	• • • •	Jx							*	2 Total Electron Content – TEC*						b			-		0	н	
Grangende Grangende <thgrangende< th=""> <thgrangende< th=""> <thg< td=""><td>A</td><td>В</td><td>С</td><td>D</td><td>E</td><td>F</td><td>G</td><td>н</td><td>I</td><td></td><td>3 to 1,000</td><td>1 to 1,000</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></thg<></thgrangende<></thgrangende<>	A	В	С	D	E	F	G	н	I		3 to 1,000	1 to 1,000					<u> </u>						
Observation Operating		Geographic	Vertical	Spatial .	Measurement	Sampling	Instrument	/ requirement	Service Area Observational User								<u> </u>						
Alteria Book Book <thbook< th=""> Book Book <</thbook<>	Observation	Coverage	Range	Resolution	Accuracy	Interval	Monitor	from:	Requirements Document, 2017			-				50	200	50					
	Auroral Boundary: LEO		LEO				CAPE				3	1				10	10						
by partial in (1) (1)	Auroral Energy										12,000	30,000	3000					4					
	Deposition: LEO		LEO				CAPE			<u>N</u>						10	1						
Backer Beld: UD LD APPER make some policy BAD Backer Beld: UD LD APPER MA A							TPS,									0.1 to 1.5	0.1 to 1.5	1					
Interest including LD	Electric Field: LEO										12,000	30,000				0.1	0.1						
L0 2 nt 30 / sc MADS	Energetic ions: LEO		LEO				REM								2 3-2.17. Tracks Analyzed	All	All						
L0 2 n 0 /										3-2.5. Average Latency [mins.] for Hi/Lo	48.120	6.16-			3-2.18. Average Latency [mins.] for Hi/Lo								
Bactorn and on all of			LEO		2 nT	10 / sec	NEMISIS				45/30	5-May			13	45/30	5-May						
Indicational base and base										io 10 3-2.6. TEC sample rate [seconds]					14 Incun Orbus	Stronghy	Stronghy	t					
integrate into			LEO				REM			11 a. Occulting satellites	1	1					07						
Image Allow Lob Note											10	1						1					
non-my refristion 00 000 / dy POPULE 000 000 / dy POPULE 000 / dy POPULE POPULE 000 / dy POPULE			LEO				REM			13 Electron Density Profiles - EDP													
Internal formity LO Monta										3-2.7 Measurement Range [electrons-m ⁻³]		10 ¹⁰ to 10 ¹³	10^10 to 10^13		15			1					
Neurital besting Lob Jate Model Lob Lob <thlob< th=""> Lob Lob</thlob<>										14	10 ¹³	10 10 10	10 10 10 10		16 Scintillation Phase Index - G	0							
Intermitting Lo Vertical 1/2 see ModAC Aurores: Supra- Thermait through Auroles: Supra-			LEO				MoSAIC			IT 2.2.8 Management Harmanian and		Less than the			i other in a start of			1					
Into Into <th< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td>200</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	· · · · · · · · · · · · · · · · · · ·		150													50	200						
Aurona: supra- Themai through Aurona Lenergy LEO 10% 1 yee Appendix to the through Aurona Lenergy 10 <td></td> <td></td> <td>LEO</td> <td></td> <td>vertical)</td> <td>1 / 2 sec</td> <td>MOSAIC</td> <td></td> <td></td> <td>15</td> <td></td> <td>3x10¹⁰ or 10%</td> <td></td> <td></td> <td></td> <td>10</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			LEO		vertical)	1 / 2 sec	MOSAIC			15		3x10 ¹⁰ or 10%				10	10						
Auroral Energy EDO 0.00 1/20 0.00 0.00 0 0.00										16	of 1011 or	10						↓					
Particles, file LEO 10% 1/sec CAPE 10 10 10 0.1										17 a. Electron Density, N _e [electrons m ⁻³]	20%	5					0.1 to 20	t					
Autorace Support Color Color <td></td> <td></td> <td>150</td> <td></td> <td>10%</td> <td>1/ 500</td> <td>CAPE</td> <td></td> <td></td> <td>18 b. N_e at F₂ layer peak, N_mF₂ [percentage]</td> <td>20</td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			150		10%	1/ 500	CAPE			18 b. N _e at F ₂ layer peak, N _m F ₂ [percentage]	20		10					-					
Thermal plance LEO 10% 1 / sec CAPE Particles, ions LEO 10% 1 / sec CAPE 1 1 N/A 4 A <td< td=""><td></td><td></td><td></td><td></td><td>10/1</td><td>17 300</td><td>CAPE</td><td></td><td></td><td>19 c. Height at F2 layer peak,HmF2 [km]</td><td>20</td><td></td><td>10 km</td><td></td><td></td><td>0.1</td><td>0.1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					10/1	17 300	CAPE			19 c. Height at F2 layer peak,HmF2 [km]	20		10 km			0.1	0.1						
Auronal Energy Particles, Ions LEO 1 / sec April April Auronal Energy (and composition of the composite of the composition of the composition of the compo											12,000	30,000	3000		12 3-2.25. Tracks Analyzed	All	A11						
Particles, ros LEO 10% 1/sec CAPE Thermosphere EO 0.70 5.00 1 1 1 N/A 1 1 N/A 1 1 0.00	•														3-2.26. Average Latency [mins.] for Hi/Lo								
Thermosphere Temperature LEO 28 1/2 sec MoSAIC 23 6. Althade Kange 100-500 km 2 1 2 km 6 memories Strongly schellater St	•.		LEO		10%	1/sec	CAPE				1				13	45/30	5-May	<u> </u>					
Imperature LEO 22% 1/2 sec MoSAIC MoSAIC<					20,0	,				23 b. Altitude Range 100-800 km	2	1	2 km			Strongly	Strongly	1					
Intermospheric Neutral Composition LEO 1/2 sec MoSAIC 2/2 moSAIC Shart 3-7/30 3-May Composition 3-2/2 mospheric Neutralion High Kall on Dorigit Vector wolds with Vector wolds with Vector wolds with Vector MoSAIC Polle with Vector Mospheric Neutralion High Kall with Vector wolds with Vector Mospheric Neutralion High Kall with Vector Mospheric Neutralion High Kall with Vector Mospheric Neutralion High Kall with Vector Mospheric Neutralion High Kall Wector Mospheric Neutralion High Kal	4 Temperature		LEO		2%	1/2 sec	MoSAIC			ar 3-2.11. Average Latency [mins.] for Hi/Lo	45 / 20	6 Mari			1 2 20 Local de Contrato, Mill R			1					
LEO 1/2 sec MoSAIC										3 24	45/30	5-may						1					
Slant total Electron Content of the lonosphere EO 3000 / day PROFILE 50 200 50 200 50 60	5 Composition		LEO		1%	1/2 sec	MoSAIC					<u> </u>											
Content of the inosphere EO Somo / day PROFILE Image: Second	Slant Total Electron											<u> </u>			15			1					
Ionosphere LEO BOO / day PROFILE Image: Second Seco											50	200	50		16	÷.		1					
Image: Construction of the co	6 Ionosphere		LEO			3000 / day	PROFILE			2. (····)		<u> </u>			17								
Internal Plasma Density 25/cm^3 or 2% 2 / sec TPS In Drift Vector 18 m/s 1 / sec In Drift Vector 1 / sec	7										10	10											
Thermal Plasma Density 2/sec TPS 1 n Drift Vector 1 sm/s 1 / sec 1 n Drift Vector 1 / sec	3										10	1											
Thermal Plasma 25/cm^3 or 2% 2 / sec TPS Density 15/cm 1 / sec TPS Ion Drift Vector 18 m/s 1 / sec TPS Ion Drift Vector 18 m/s 1 / sec Ion Drift Vector 10 m Oriting 0 m Oriting Ion Drift Vector 10 m Oriting Ion Drift Vector 10 m Oriting Ion Drift Vector 10 m Oriting Ion Drift Vector 0 m Oriting Ion Drift Vector 0 m Oriting Ion Drift Vector 0 m Oriting	9											-											
Ion Drift Vector 18 m/s 1 / sec TP5											0.1 to 1.5	0.1 to 1.5											
OURD COSMIC-2 +										31 3-2.16. Measurement Uncertainty [RMS]	0.1	0.1											
					18 m/s	1/sec	IPS				+												
	3					-				Peady Se Accessibility: Investigat													

Geospace Dynamics Constellation (GDC) Independent Review Board (IRB) Report

Co-Chair - O. Figue roa Co-Chair - M. Hagan



National Environmental Satellite, Data, and Information Service

The GDC Mission

6 polar-orbiting satellites at ~375 km
6 science instruments
3 interdisciplinary science teams
1 radiation environment monitor (REM)
Precise Orbit Determination for

GNSS neutral density cross-calibration

Science Instruments:

- AETHER Langmuir probe (PI Andersson, CU Boulder)
- MoSAIC ion/neutral mass spec (PI Benna, UMBC)
- CAPE auroral precipitation (PI Gershman, GSFC)
- TPS Thermal plasma (PI Anderson, UT Dallas)
- NEMESIS Magnetometer (PI Moldwin, U of Michigan)
- PROFILE GNSS-RO (PI Verkhoglyadova, JPL)

Interdisciplinary Science Teams:

- NEXUS (PI Thayer, CU Boulder): GNSS neutral density; real-time space weather experience (GOLD & IMAP)
- ADAPTIVE (PI Bishop, Aerospace Corp): model/data connection & visualization; space weather expertise
- SOPHIE (PI Deng, UT Arlington): multiscale forcing from above

10/11/2022

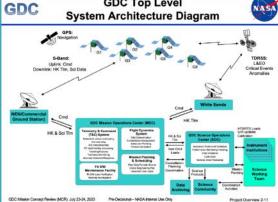
Geospace Dynamics Constellation IRB

GDC

all precess in local time

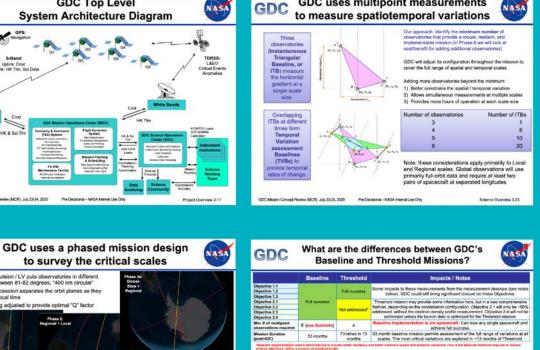
On-board propulsion / LV puts observatories in different

Differential precession separates the orbit planes as the


inclinations between 81-82 degrees, "400 km circular

sion Concept Review (MCR) July 23-24, 2020

Geospace Dynamics Constellation IRB


GDC Architecture

- Baseline mission: Six spacecraft (6 identical sets of instruments) in different inclinations 81-82 degrees/400Km orbits, differential procession separates the orbit planes as they precess in local time
 - Important to launch 6 S/C to protect the integrity of the minimum required (5) to meet science objectives in 3 years
- Threshold mission: Four spacecraft address highest priority science objectives in the STDT

Pre-Docisional - NASA Internal Use Or

GDC Top Level

GDC uses multipoint measurements

7

ASA

In-track spacing adjusted to provide optimal "Q" facto Energy-angle d B, Magnetic Field bining with ground-based Q- or "quality" factor 1: collinear 2: equilateral

Science Overview 3-25

modest impact on accuracy of urements, modeling, and other space asse NmF2, HmF2 (peak plasma density, altitude of the peak) modest impact on ion d pressure gradient - can be reduced somewhat with the use of modeling Start TEC and S4 index integrated column density above the constellation and pr

GDC Mission Concept Review (MCR) July 23-24, 2020 Pre-Decisional – NASA Internal Use Only Science Overview 3-2

10/11/2022

National Environmental Satellite, Data, and Information Service

10