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There are commonalities between type 2 diabetes mellitus (T2DM) and
neurodegenerative disorders — especially related to cell death mechanisms.

Hence, a drug efficacious in T2DM may be effective in neurodegenerative
disorders for which useful drugs are unavailable.

Individuals with T2DM prescribed GLP-1R agonists (incretin mimetics) and gliptins (DPP-4
inhibitors) are 36-60% less likely to develop PD (Brauer et al., Brain. 143:3067-76, 2020)
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GLP-1R Expression in Brain
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Incretin mimetic studies in neurodegeneration
GLP-1R agonists to mitigate neurodegenerative disorders: 2002 onwards
(Perry et al., J Pharmacol Exp Ther. 300: 958-66, 2002

Perry et al., J Pharmacol Exp Ther. 302: 881-8, 2002).

Neurotrophic/protective/anti-inflammatory actions and mitigating brain insulin

resistance in cellular and/or animal models:

Perry & Greig 2002

(NIA/NIH)

Parkinson’s disease, Alzheimer’s disease, Traumatic brain injury, Multiple system

atrophy, ALS, Huntington’s disease, peripheral neuropathy, ischemic stroke,
idiopathic intracranial hypertension and others........

...... but do these actions translate to human disease?
...... which agonists should best be evaluated?
...... when in the disease process?

To gain a quick overview of the field:
Short perspective: Kopp KO et al., Ageing Res Rev. 98:102343, 2024
(5to 10 min read)

Katie Kopp
(NIA/NIH)
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Drug target availability across age and disease:

Rodent brain
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Consequences of GLP-1R a
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Key signaling pathways in neurons activated by incretins —
particularly by GLP-1R activation — can be determined in cell culture

Incretin Based Therapy Target(s)
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TH Neurons

GLP-1R stimulation protects tyrosine hydroxylase (TH) positive neurons

from MPTP toxicity and preserves dopamine and metabolite levels in
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MitoPark mouse, a progressive PD model involving deleted mitochondrial transcription factor TFAM (respiratory
chain function) in midbrain DA neurons: PT320 (Exenatide) delays disease progression across multiple parameters
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MitoPark mouse, a progressive PD model involving deleted mitochondrial transcription factor TFAM (respiratory
chain function) in midbrain DA neurons: PT320 (Exenatide) delays disease progression across multiple parameters
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Replicated MitoPark mouse PD Exenatide study and attenuated mitochondrial dysfunction (Wang et al., J Biomed Sci. 31: 38, 2024)




Summary

GLP-1-based receptor agonists (RAs) have been evaluated across multiple preclinical
neurodegenerative and neuropsychiatric disorders models since 2002 — and, largely, have been found
highly promising.

Dual/Triple RAs are generally more potent than single GLP-1RAs (but brain uptake is important)
Multiple actions underpin efficacy in preclinical models (neurotrophic, neuroprotective/antiapoptotic, anti-
inflammatory, insulin resensitization, neurogenesis, mitochondrial, autophagy, ..... others)

...... do any of these translate into human studies and how can they be measured? (Biomarkers)

Single GLP-1RA human clinical trials in Parkinson’s disease are demonstrating promise... and
Alzheimer’s disease clinical trials are ongoing

Other neurological disorder clinical trials should be considered (........ TBI, ischemic stroke, peripheral
neuropathy........ ?)
Future

Dual/Triple RAs, ..... DPP-4 inhibitors and combination chemotherapy ?

Concerns

Selecting the best agent(s) / when to initiate treatment in the disease process
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