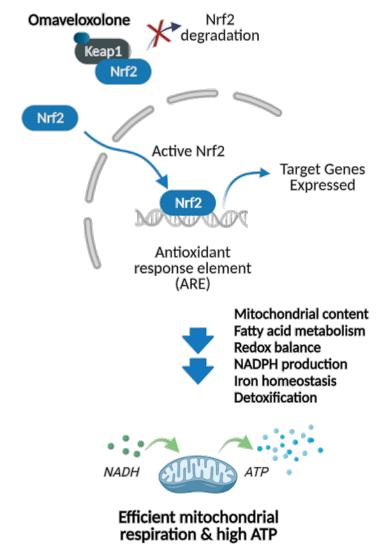
Leveraging Natural History Data to Support Approval of Skyclarys for the Treatment of Friedreich's Ataxia

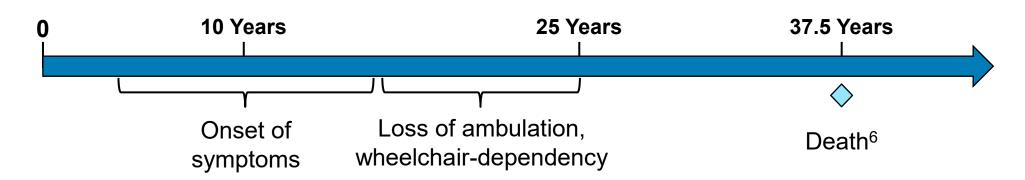
Colin Meyer, MD


Biogen; Former Chief Innovation Officer, Chief R&D Officer, and Chief Medical Officer, Reata Pharmaceuticals, Inc.

Outline

- Overview of Friedreich's ataxia (FA) pathology and omaveloxolone (Skyclarys[©])
- FA-COMS natural history study and FA disease progression
- Omaveloxolone pivotal study results and regulatory guidance
- Regulatory criteria for demonstrating clinical effectiveness from single pivotal study
- Propensity matched analysis of omaveloxolone extension data to natural history data

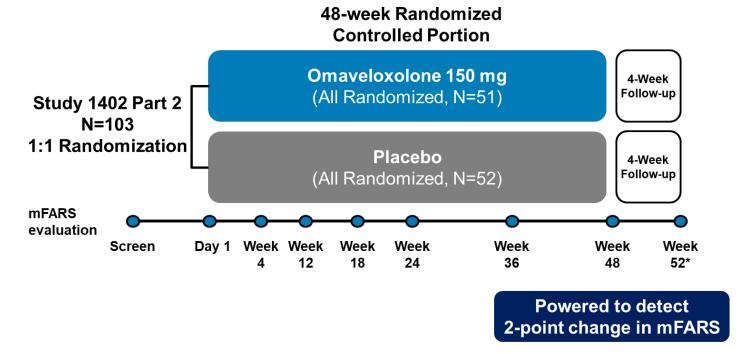
FA Pathology and Omaveloxolone Mechanism Summary


- Nrf2 regulates genes that promote mitochondrial function
- FA is caused by mutations in *FXN* gene
 - Reduces frataxin protein levels
 - Results in Nrf2 suppression
- Nrf2 suppression leads to mitochondrial dysfunction
- Omaveloxolone restores Nrf2 activity and improves mitochondrial function

FA-COMS – Ongoing, Prospective Natural History Study¹

- Largest global network of clinical research centers specializing in FA and funded by Friedreich's Ataxia Research Alliance (FARA)
- Ongoing, prospective collection of many clinical endpoints, including modified Friedreich's ataxia rating scale (mFARS)
 - All sites and investigators receive standardized training
 - Collect baseline demographics and disease characteristics prognostic for mFARS progression
 - mFARS contains 4 sections and assessed by trained neurologists
 - mFARS developed in collaboration with FDA
- Study has resulted in over 25 publications characterizing the course of FA, prognostic factors, and results of clinical endpoints over time

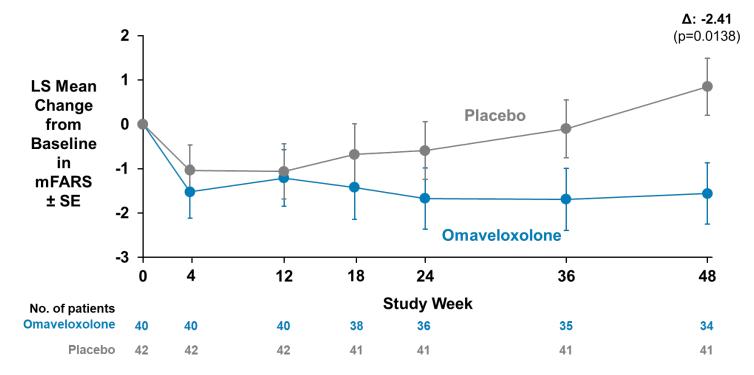
FA Disease Progression Is Inevitable, Well-Characterized, and Predictable^{1,2,3,4,5}



- Typical onset of symptoms occurs between ~ 5 and 15 years of age
 - Primary presenting symptoms are ataxia and fatigue
 - Most lose ability to ambulate and become wheelchair dependent by mid-20s
- Mean life expectancy of 37.5 years⁶ generally due to cardiovascular complications⁷

^{1.} Pandolfo, Arch Neurol 2008; 2. Patel et al, Ann Clin Transl Neurol 2016; 3. http://curefa.org; 4. Lynch et al, Arch Neurol 2002; 5. Rummey et al, EClinicalMedicine 2020; 6. Giugliano & Sethi, Tex Heart Inst J 2007; 7. Tsou et al, J Neurol Sci 2011

Pivotal Study 1402 Part 2 Design


- Part 1 dose-ranging study identified dose
- Part 2 was a double-blind, placebocontrolled, randomized trial (n=103)
- Enrolled a wide range of patients with FA aged 16 to 40 years
- Primary endpoint: change from baseline in mFARS at Week 48
- Patients from Part 1 and 2 allowed to enroll in open-label extension

mFARS=modified Friedreich's ataxia rating scale Patients self-administered study treatment once daily for 48 weeks and were off treatment in the 4-week follow-up period. *mFARS data at Week 52 collected at Extension Day 1.

Pivotal Study 1402 Part 2 Met Primary Endpoint

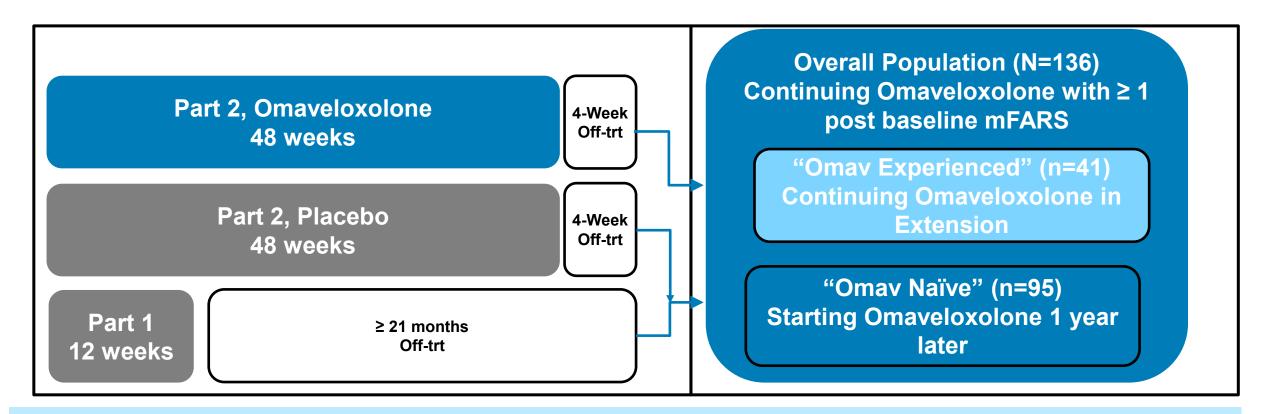
- Pivotal study met traditional threshold for success with p-value <0.05
 - All populations favored Omav
 - All sections of mFARS favored Omav
 - Major subgroups favored Omav
- Did not meet traditional approval pathways:
 - Two adequate and well-controlled studies
 - Single, highly persuasive study
- FDA requested additional data or analyses to support approval

Regulatory Criteria for Demonstrating Clinical Effectiveness from Single Pivotal Study Met

 Circumstances for Reliance on Single Study

 Adequate well-controlled study
 ✓

 Confirmatory evidence
 ✓


 Circumstances for Regulatory Flexibility

FDA Draft Guidance Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products, December 2019

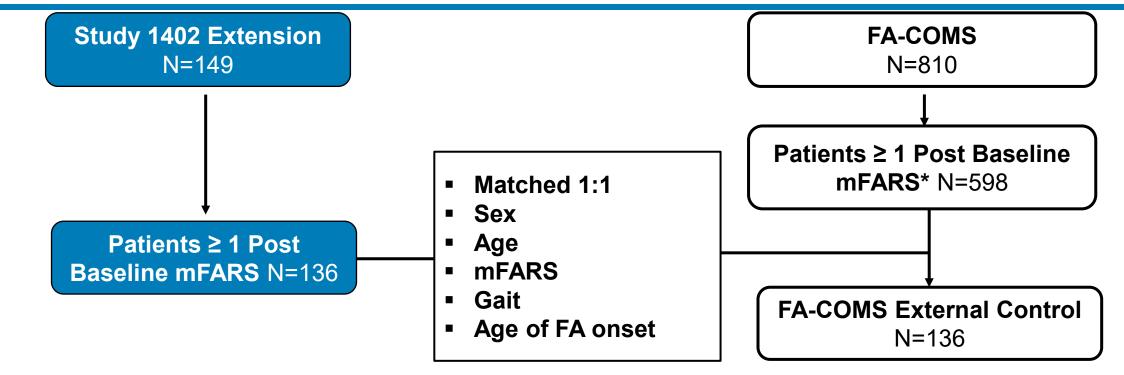
Open-Label Extension Study Provided Additional Data to Interrogate

Placebo-Controlled Studies

Open-Label Extension Study

To interpret the long-term effect of omaveloxolone in extension study, a comparator was needed and for this we turned to FA-COMS

FA-COMS is an Optimal Source for External Control Comparators

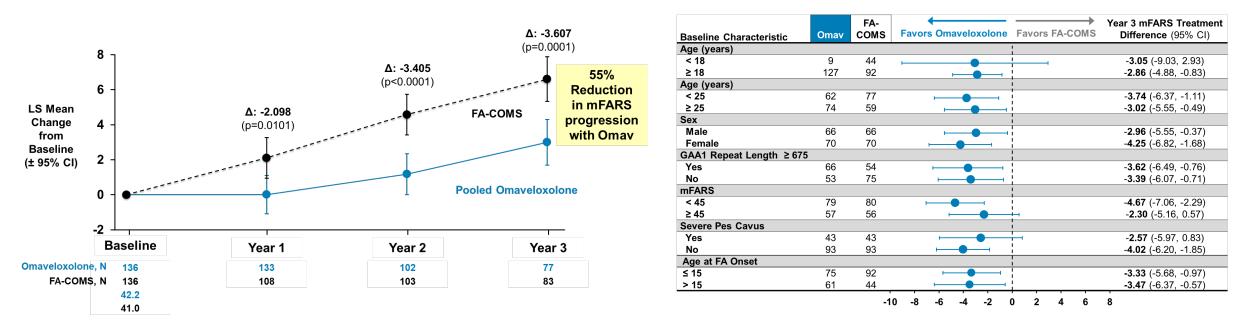

ICH E10 Points to Consider*	Characteristics of Study 1402 Extension and FA-COMS Natural History Study	
Diagnostic criteria	Both studies enrolled patients with genetically confirmed FA	
Institutions/Clinical settings	~20 centers globally are specialized in conducting the mFARS Substantial overlap of sites across both studies	
Observational conditions for endpoints	mFARS was prospectively collected with standardized methodology including similar training of neurologists from both studies	
Concomitant medications	Lack of potential confounding by concomitant medications since there were no effective agents for FA	
Covariates influencing outcome of mFARS	FA has well-defined prognostic factors for mFARS progression, collected in both studies	

*ICH E10: Choice of Control Group and Related Issues in Clinical Trials

Propensity-Matched Factors Identified Based on Medical Rationale in Collaboration with FARA

Covariate	Medical Rationale
Sex	 Sexual dimorphisms inconsistently observed in ataxia studies
Age	 Primary determinant of phenotypic severity
Age of FA onset	 Surrogate for relative rate of progression and GAA repeat length
mFARS score at baseline	 Allows matching of patients at the same level of function
Gait score at baseline	 Allows matching of patients at the same level of function

Propensity Matching Robust Method for Leveraging Similarities Between Studies



Process for propensity matching was repeated to identify FA-COMS external controls for "Omav-Naïve" (N=95) and "Omav-Experienced" (N=41)

*Having baseline, at least one post-baseline mFARS within 3 years, and all baseline characteristics used for propensity score calculation

Pooled Omaveloxolone Patients Progress Slower vs Matched FA-COMS External Control

- More than 50% slowing in mFARS at Year 3 across all populations
 - All sections of mFARS and all subgroups favored Omav
 - Effect in treatment-naïve patients at Year 1 is similar to effect in Study 1402 Part 2
 - Similar results in sensitivity populations (rematched with higher level of stringency)
- More than 3x the number of patients in the Propensity-Matched analysis vs Study 1402 Part 2 (272 vs 82) and 3x the follow-up time (3 years vs 1 year)

Extension data as of March 2022; Δ = Difference between treatment groups (omaveloxolone – FA-COMS)

Regulatory Criteria for Demonstrating Clinical Effectiveness from Single Pivotal Study Met

Regulatory Pathway	Omaveloxolone Data	
Adequate well-controlled study	 Well-designed, placebo-controlled study Primary endpoint showed clinically relevant benefit to omaveloxolone-treated patients of 2.41 points over course of year (p=0.0138) Sensitivity analyses support robustness of results 	
Confirmatory evidence		
Supportive natural history	 Patients on omaveloxolone progress slower than FA-COMS Difference: -3.607 (p=0.0001) [mentioned on label] 	
Delayed-start analysis	 Patients treated with omaveloxolone early did better vs those who started on placebo [not mentioned on label] 	
Mechanistic evidence	 Activation of Nrf2, which is suppressed in FA, associated with clinical benefit [not mentioned on label] 	
Regulatory flexibility depending on seriousness of disease and unmet need	 Rare, progressive, fatal disease 	

FDA Draft Guidance Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products, December 2019