Emerging Trends in Econometric Methodologies: From Measurement to Causal Analysis

Rodrigo Pinto

September, 2024

1 Future Directions

New Measures to Improve Behavior Modeling Example 1 Example 2

3 Advances in Identification of Causal Models

Sensitivity Analysis Combining IV Identification and Classical Economic Behavior

4 Advances in Machine Learning: Estimation and Forecast

Over the next decade, advancements in econometrics will likely be shaped by three key areas:

1 New Measures

- Novel data sets aimed to improve behavior modeling
- 2 Causality
 - Growing Literature on Sensitivity to identification assumptions
 - New approaches to merge behavior theory into identification strategies

3 Machine Learning and Data Availability

- Application of machine learning techniques to large datasets
- Integration of estimation algorithms with traditional econometric methods.
- Advances in the field of causal discovery

Steps of Causal Analysis

• A causal *framework* is a selection of mathematical and statistical tools that are suitable to perform three distinct tasks of causal inference:

Task	Description	Requirements
1	Defining Causal Models	A Scientific Theory
		A Mathematical Framework
2	Identification of	Mathematical/Causal Analysis
	Causal Parameters	Data Generating Process
3	Evaluating Parameters	Statistical Analysis
	from Data	Estimation/Inference

- **1** Task 1 Benefits from New Measurements / Better Models
- 2 Task 2 Benefits from Behavior Theory / Sensitivity Analysis
- **3** Task 3 Bigger Data sets / Integration of Machine Learning and Econometrics

2 New Measures to Improve Behavior Modeling Example 1 Example 2

3 Advances in Identification of Causal Models

Sensitivity Analysis Combining IV Identification and Classical Economic Behavior

4 Advances in Machine Learning: Estimation and Forecast

The Role of Measurement in Economic Models

Traditional Measurement Approach

- Most empirical work in economics has historically relied on a narrow set of observable measures, such as:
 - Consumer choices, prices, incomes, and expenditures.
 - Objective data such as market access, demographic indicators, socio-economic statuses.
- This limited scope often forces researchers to impose strong assumptions (e.g., homogeneity of preferences).
- Models often emphasize observable choices to infer unobservable preferences or beliefs.

Limitations of Traditional Measures

- Restricted data leads to:
 - Simplified and overly restrictive models.
 - Difficulty in identifying causal links between variables.
- Strong assumptions, such as rational expectations, are required to compensate for the lack of comprehensive data.

Why Broader Measures are Useful

- Traditional data sets are limited to assess complexities of economic agents.
- Economic theory can and should inform the design of new measures
- These measures can lead to better and more realist models of economic behavior
- Interaction between measurement tools and models enables more accurate empirical analyses.
- This initiative has been advocated by many economists. Almas, Attanasio, and Jervis (2024)

• Subjective Expectations:

- Surveys that capture individuals' expectations about future income, inflation, or investment returns (e.g., Bank of Italy consumer surveys).
- Useful in models where agents' beliefs about the future influence their decision-making.

• Parental Beliefs on Child Development:

- Eliciting parental beliefs on productivity of time and financial investments in child education (e.g., Cunha et al., 2013).
- Model explains differences in investment behavior across households.

• Social Norms and Cultural Influences:

- Surveys that measure attitudes towards gender roles, trust, or risk aversion.
- Example: Studies measuring attitudes towards redistribution and their impact on labor market participation (e.g., Alesina et al., 2018).

• Management Skills:

- New datasets measuring firm-level management practices (e.g., Bloom and Van Reenen, 2007).
- Explains the role of management quality in productivity differences across firms.

Example 1: Beliefs and Parental Investment

• Traditional Assumptions in Child Development Models

- Models of child development often assume that:
 - 1 Parents have full knowledge of the child development process
 - 2 Investment is optimal
- Theses assumptions simplify model analysis but may lead to inaccurate predictions.

• More realistic Behavior

- Investment decisions (e.g., time, money) are made based on imperfect understanding of child development.
- Investments are often are often the result of negotiation between parents.

• Useful Measurements

- Subjective expectations (e.g., beliefs about income, returns on education).
- Willingness to pay for control over resources (e.g., intrahousehold bargaining).

New Measurement: Parental Beliefs

Introducing Parental Beliefs into the Model

- New measure captures parental beliefs on investment productivity.
- Parents may hold *distorted* beliefs about how their investments (e.g., reading to children, spending on education) affect outcomes.

Modeling Child Development with Belief Distortion

 $H = f(H_0, I(\theta), \theta) + \varepsilon$

- *H* is the child's developmental outcome.
- H_0 is the initial condition (e.g., baseline ability).
- *I* represents parental investments (e.g., time, financial resources).
- θ is parental belief about the productivity of the investment.
- ε is a random shock.

Empirical Implications

- Parental investment (I) depends on actual returns and on perceived returns (θ).
- Distorted beliefs can lead to over- or under-investment in child development.

Example 2: Choice Elicitation

- IV models are commonly used to assess the causal effect of an endogenous treatment on an outcome.
- These models assume that the choice happens immediately after the instrument is applied.
- In reality, agents may plan to take the treatment, but unforeseen factors can prevent them from following through.
- The agent's intended choice (E) often differs from the actual choice (T).
- Eliciting choices before the instrument is applied allows for more detailed policy evaluation models.

LATE Model (Imbens and Angrist, 1994)

Two-valued Treatment, Two-valued Instrument

1 Binary Choice: $T_i \in \{0, 1\}$

- $T_i = t_0$, Agent *i* chooses **not** to be treated
- $T_i = t_1$, Agent *i* chooses the treatment

2 Instrument Z_i – voucher assignment for agent i:

- $Z_i = z_0$, **no** incentives to choose the treatment
- $Z_i = z_1$, incentivizes to choose the treatment

③ Response Variable : Vector of *counterfactual* choices that would occur if agent *i* were assigned to z_0 or z_1 .

 $oldsymbol{S}_i = \left[egin{array}{c} T_i(z_0) \\ T_i(z_1) \end{array}
ight]$ treatment choice if assigned to $z_1, \, Z_i = z_0$ treatment choice if assigned to $z_1, \, Z_i = z_1$

4 Outcome : $Y_i = Y_i(1)\mathbf{1}[T_i = t_1] + Y_i(0)\mathbf{1}[T_i = t_0]$

LATE Model: Assumptions and Identification

Core IV Assumptions:

- Exclusion Restriction: $Y_i(z_0, t) = Y_i(z_1, t)$
- Exogeneity: $(Y(t), T(z)) \perp Z$
- IV Relevance: $P(T = t_1 | Z = z_0) \neq P(T = t_1 | Z = z_1)$

Identification Assumption

• Monotonicity Condition: $T_i(z_0) \leq T_i(z_1)$ for all i

Consequences of Monotonicity:

- 1 Eliminates one type: defiers
- **2** Identifies $LATE = E(Y(t_1) Y(t_0)|Complients)$

Instrumental Choice		Three Response-types S			
Variable	Counterfactuals	Never Takers	Compliers	Always Takers	
z_0	$T_i(z_0)$	t_0	t_0	t_1	
z_1	$T_i(z_1)$	t_0	t_1	t_1	

LATE under Elicitation (Pantano et. al.)

- Let $E \in \{e_0, e_1\}$ be the intended choice obtained via choice elicitation
- Let $T \in \{t_0, t_1\}$ be the actual choice that is observed

LATE under Choice Elicitation

Core IV Assumptions:

- Exclusion Restriction: $Y_i(z_0, e, t) = Y_i(z_1, e, t)$
- Exogeneity: $(Y(e,t), E(z), T(e,z)) \perp Z$
- IV Relevance: $P(E = e_1 | Z = z_0) \neq P(E = e_1 | Z = z_1)$

Identification Assumptions

- Monotonicity of Intended Choice: $E_i(z_0) \leq E_i(z_1)$ for all i
- Treatment Excl. Restriction: $T_i(z_0, e) \leq T_i(z_1, e)$ for all i
- Choice Consistency: $\mathbf{1}[T_i(z,0)=1] + \mathbf{1}[T_i(z,1)=0] \neq 0$ for all i

Types	Intended Never-takers		Intended Compliers			Intended Always-take	
(E,T)	NN	NA	CN	CC	CA	AN	AA
$(E(z_0), T(E(z_0)))$	(e_0, t_0)	(e_0, t_1)	$ (e_0, t_0) $	(e_0, t_0)	(e_0, t_1)	(e_1, t_0)	$(e_1, t_1$
$(E(z_1), T(E(z_1)))$	(e_0, t_0)	(e_0, t_1)	(e_1, t_0)	(e_1, t_1)	(e_1, t_1)	(e_1, t_0)	(e_1, t_1)

2 New Measures to Improve Behavior Modeling Example 1 Example 2

 3 Advances in Identification of Causal Models Sensitivity Analysis Combining IV Identification and Classical Economic Behavior

4 Advances in Machine Learning: Estimation and Forecast

Trends in Identification Literature

1 Assessing Identification Assumptions

• Sensitivity Analysis in Observational Research and IV Models

2 Novel Identification Strategies in IV Models

• Combine IV with behavioral theory to develop new identification strategies

3 Improving External Validity

- Synthetic control methods and meta-analysis techniques.
- Transportability/Generalizability of experimental and observational studies (Elias Bareinboim, Judea Pearl).

4 Causal Inference in Social Networks

- Study causal relationships within interconnected systems (e.g., social networks, market interactions).
- Ogburn and VanderWeele (2014), Hudgens and Halloran (2008), Aronow and Samii (2017).

5 The Causal Revolution in DiD Models

• Some recent advances: Callaway, B. and Sant'Anna, P. (2021), Goodman-Bacon, A. (2021), Sun, L. and Abraham, S. (2021), Athey, S. and Imbens, G. (2018).

Assessing Identification Assumptions

• The most prevalent models in empirical economics are Matching and IV

Matching Model Observational Studies

Problem:

- Exact Identification Assumptions are seldom valid.
- Possible Approaches: robustness analysis, test of model assumptions.
- Typical Approach: Pray for a reasonable referee.

Rodrigo Pinto

Assessing Identification Assumptions

• Violation of Identification Assumptions

Matching Model Observational Studies

Ident. :Matching: $Y(t) \not\perp T | X$ ExcAss.Support: 0 < P(T = 1 | X) < 1Exc

Excl. Restrc.: $Y(t, z) \neq Y(t, z')$ Exogeneity: $(Y(t), T(z)) \not\perp Z$

Sensitivity Analyses Solutions:

- E-Value (VanderWeele et. al.)
- Suite of sensitivity analysis tools (Cinelli et. al.)
 Systematic analyses for any Linear Structural Causal Model.

Sensitivity Analysis in Matching and IV Models

• Beyond Testing Identification Assumptions:

 Rather than assuming that identification assumptions hold, sensitivity analysis explores how robust the conclusions are to potential violations.

• Key Question:

- How strong must the association between unobserved confounders and both treatment (T) and outcome (Y) be to invalidate the observed treatment effect?
- Objective:
 - Evaluate the robustness of causal conclusions by quantifying the degree of reliance on identification assumptions, rather than testing their exact validity.

Identifying IV using Classical Economic Behavior

- IV Model Identification often relies on monotonicity assumptions:
 - Examples include: Ordered, Unordered, Partial, and Extensive Margin Monotonicity.
- Advantages of Revealed Preference Analysis:
 - Capable of generating all commonly used monotonicity conditions.
 - Enables novel monotonicity criteria for cases where standard IV assumptions do not hold.
 - Clarifies the sources of identification.
 - Strengthens the credibility of identification assumptions.

Counterfactual			Four Response-types			
IV	Choices	Never-takers	Compliers	Always-takers	Defiers	
		s_n	s_c	s_a	s_d	
z_0	$T_i(z_0)$	t_0	t_0	t_1	t_1	
z_1	$T_i(z_1)$	$ t_0$	t_1	t_1	t_0	

• Monotonicity: (Adapted from Imbens and Angrist, 1994)

$$\mathbf{1}[T_i(z_0) = t_1] \le \mathbf{1}[T_i(z_1) = t_1]$$

- Monotonicity **Eliminates** Response-type s_d (defiers).
- Remaining types are grouped in a Response Matrix:

$$\mathbf{R} = \begin{bmatrix} \boldsymbol{s}_n & \boldsymbol{s}_c & \boldsymbol{s}_a & T(z) \\ t_0 & t_0 & t_1 \\ t_0 & t_1 & t_1 \end{bmatrix} \begin{bmatrix} T_i(z_0) \\ T_i(z_1) \end{bmatrix}$$

$$\mathbf{LATE} = \frac{\mathbf{E}(Y|z_1) - \mathbf{E}(Y|z_0)}{\mathbf{P}(T = t_1|z_1) - \mathbf{P}(T = t_1|z_0)} = E(Y(t_1) - Y(t_0)|S = s_c)$$

Another Look at LATE: A Choice-Based Model

• Incentive Matrix In : ranks choice incentives for each t across z's

$$\mathbf{In} = egin{bmatrix} t_0 & t_1 \ 0 & 0 \ 0 & 1 \end{bmatrix} egin{array}{c} z_0 \ z_1 \ z_1 \end{bmatrix}$$

• Economic Connection: Using the Weak Axiom of Revealed Preferences WARP, we can show that:

$$\underbrace{T_i(z_0) = t_1}_{\text{Choice}} \text{ and } \underbrace{\mathbf{In}(z_1, t_0) - \mathbf{In}(z_0, t_0) < \mathbf{In}(z_1, t_1) - \mathbf{In}(z_0, t_1)}_{\text{Incentive Condition}} \Rightarrow \underbrace{T_i(z_1) \neq t_0}_{\text{Restriction}}$$

$$\underbrace{T_i(z_0) = t_1 \Rightarrow T_i(z_1) \neq t_0}_{\mathbf{1} = \mathbf{1}} \equiv \underbrace{\mathbf{1}[T_i(z_0) = t_1] \leq \mathbf{1}[T_i(z_1) = t_1]}_{\mathbf{1} = \mathbf{1}[T_i(z_1) = t_1]}$$

Choice Restriction from WARP

Monotonicity Relation

Example of Unordered Choice Model

Kirkeboen, Leuven, and Mogstad (2016)

- Generic Choices: $T \in \{t_0, t_1, t_2\}$
 - $T_i = t_0$, Baseline choice
 - $T_i = t_1$, Choice 1
 - $T_i = t_2$, Choice 2
- Instrument: $Z \in \{z_0, z_1, z_2\}$
 - $Z_i = z_0$, No incentives Control group
 - $Z_i = z_1$, Incentivizes choice t_1
 - $Z_i = z_2$, Incentivizes choice t_2
- Natural Monotonicity Criteria

$$\mathbf{1}[T_i(z_0) = t_1] \le \mathbf{1}[T_i(z_1) = t_1] \\ \mathbf{1}[T_i(z_0) = t_2] \le \mathbf{1}[T_i(z_2) = t_2].$$

Problem:

1 Monotonicity cannot secure the identification of any causal parameter

2 Standard 2SLS estimates do not have a causal interpretation

Example of Unordered Choice Model

Kirkeboen, Leuven, and Mogstad (2016)

• Response Variable : Unobserved vector of counterfactual choices

$$S_i = \begin{bmatrix} T_i(z_0) \\ T_i(z_1) \\ T_i(z_2) \end{bmatrix}$$
Potential Choice under no incentives (z_0)
Potential Choice with incentives (z_1)
Potential Choice with incentives (z_2)

- Each counterfactual choice $T_i(z)$ can take one of the three treatment values in $\{t_0,t_1,t_2\}$
- There are 27 potential response-types
- Monotonicity conditions eliminate 12 out of 27 response-types
- Remaining 15 response-types do not secure identification of causal parameters

Revealed Preference Analysis Approach

- 1 Step 1: Design of the experiment defines the Incentive matrix In
- **2** Step 2: Incentive Matrix + Choice Axioms = Choice Restrictions
- **3 Step 3:** Choice Restrictions ⇒ Response-types
- 4 Step 4: Response Types are all we need for Identification Analysis

Step 1: Intervention Design Defines the Incentive Matrix

- Treatment Choices:
 - $T_i = t_0$, Baseline
 - $T_i = t_1$, Choice t_1
 - $T_i = t_2$, Choice t_2
- Instrument: $Z \in \{z_0, z_1, z_2\}$
 - $Z_i = z_0$, No incentives Control group
 - $Z_i = z_1$, Incentivizes choice t_1
 - $Z_i = z_2$, Incentivizes choice t_2
- Incentive Matrix (In) describes the Experimental Design

Tuition Discount	Incentive Matrix				
Random Assignment	Z-values	t_0	t_1	t_2	
Control	z_0	0	0	0	
Incentivizes t_1	z_1	0	1	0	
Incentivizes t_2	z_2	0	0	1	

	Choice	Incentive	e Matrix	Relations	Restriction
WARP	$T_i(z) = t$,	$\Delta \boldsymbol{In}_{t'}(z,z')$	$\leq 0 \leq$	$\Delta In_t(z,z') \Rightarrow $	$T_i(z') \neq t'$

$$In = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + WARP = 5$$
 Choice Restrictions

1	$T_i(z_0) = t_0$	\Rightarrow	$T_i(z_1) \neq t_2$	and	$T_i(z_2) \neq t_1$
2	$T_i(z_0) = t_1$	\Rightarrow	$T_i(z_1) = t_1$	and	$T_i(z_2) \neq t_0$
3	$T_i(z_0) = t_2$	\Rightarrow	$T_i(z_1) \neq t_0$	and	$T_i(z_2) = t_2$
4	$T_i(z_1) = t_2$	\Rightarrow	$T_i(z_0) = t_2$	and	$T_i(z_2) = t_2$
5	$T_i(z_2) = t_1$	\Rightarrow	$T_i(z_0) = t_1$	and	$T_i(z_1) = t_1$

• Conditions 2 and 3 subsume previous monotonicity conditions.

Step 3: Choice Restrictions \Rightarrow **Types**

- Choice restrictions eliminate 19 out of the 27 response-types
- The eight response-types that comply to all choice restrictions are:

$$\boldsymbol{R} = \begin{bmatrix} \boldsymbol{s}_1 & \boldsymbol{s}_2 & \boldsymbol{s}_3 & \boldsymbol{s}_4 & \boldsymbol{s}_5 & \boldsymbol{s}_6 & \boldsymbol{s}_7 & \boldsymbol{s}_8 \\ t_1 & t_1 & t_0 & t_0 & t_2 & t_0 & t_0 & t_2 \\ t_1 & t_1 & t_1 & t_1 & t_1 & t_0 & t_0 & t_2 \\ t_1 & t_2 & t_0 & t_2 & t_2 & t_0 & t_2 & t_2 \end{bmatrix} \begin{bmatrix} T(z_0) \\ T(z_1) \\ T(z_2) \end{bmatrix}$$

Step 4: Properties of the Response Matrix

- 1 Identifies most of the counterfactual outcome mean
- 2 Standard 2SLS estimates has causal interpretation
- **3** Ordered Monotonicity $T_i(z_0) \leq T_i(z_1) \leq T_i(z_2)$ holds

2 New Measures to Improve Behavior Modeling Example 1 Example 2

3 Advances in Identification of Causal Models

Sensitivity Analysis Combining IV Identification and Classical Economic Behavior

4 Advances in Machine Learning: Estimation and Forecast

Machine Learning for Causal Evaluations

Recent Advances

- **Causal Machine Learning**: Integrating ML techniques to improve causal inference (e.g., Double Machine Learning, Targeted Regularization).
- Non-parametric Methods: Handling high-dimensional data with flexible non-parametric approaches.
- Automated Model Selection: Using ML algorithms to automate variable selection and model diagnostics.

Future Directions

- Hybrid Econometrics-ML Models: Combining ML's predictive power with econometrics' causal inference.
- Explainability in ML: Developing methods to make machine learning models more interpretable for policy applications.
- **Personalized Policy Evaluation**: Using ML to estimate heterogeneous treatment effects and tailor policy interventions.