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Rapid scientific advances in impact attribution

Key pieces include improved understanding of

1. how outcomes y respond to local changes in climate variable c

2. how anthropogenic emissions alter global climate, and in turn ¢
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Key pieces include improved understanding of
1. how outcomes y respond to local changes in climate variable ¢
2. how anthropogenic emissions alter global climate, and in turn ¢

Some implications and key points:

1. Doing this credibly often does not involve saying anything about extremes
specifically

2. Because GHGs are well mixed, can now fairly credibly link (some) specific
damages to specific emissions/ emitters



Playbook for specific emissions = specific damages:
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Playbook for specific emissions = specific damages:

35 billion t

30 billion t

25 billion t

20 billion t

15 billion t

10 billion t

5 billion t

Ly, —

— India

[ Africa

—- South America
North America
(excl. USA)

— United States

rope

ot
1750

TTEU27)

1800 1850 2000 2023

Change in
global climate

0.0020
0.0015

0.0010

AGMST (°C)

0.0005

0

2000 2050 2100 2150 2200 2250 2300
Year

Change in
local climate

Simulated change at 2°C global warming

0 051 15 2 25 3 35 4 45 5 55 6 65 7

Change (°C) >
Warmer

»

ﬁ

Local damage

0.05
0.00 —
-0.05 —|
2
[
£_ -
g 0.10
<
o
-0.15
BHM (dotted)
-0.20 — cubic
linear timetrend
-0.25 -~ region-yr FE

T T T T T T 1
0 5 10 15 20 25 30

temperature (C)



“Damage functions” well estimated for many sectors, outcomes
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Estimation uses causal inference
techniques that exploit longitudinal data

Areas where we know a lot:

Ag = f(temperature, drought)

Health = f(temperature, TCs)

Violence = f(temperature)

Energy use = f(temperature)

Economic output = f(temp, rainfall, TCs)



Example: temperature and mortality

Well-established U-shaped relationship
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Change in deaths

Example: temperature and mortality

Well-established U-shaped relationship The vast majority of temperature-attributed deaths
happen at moderate cold or heat
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Example: temperature and output

Well-established inverted-U-shaped relationship
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Extremes (# hot days, temperature variance, extreme rainfall) add a bit of extra explanatory power,
but signal dominated by annual average temperature

This is very well mapped to emissions!
Burke et al 2024, 2018, 2015



Example: Effect of US emissions since 1990 on the Brazilian economy through 2020
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Example: Effect of US emissions since 1990 on the Brazilian economy through 2020
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Example: Effect of US emissions since 1990 on the Brazilian economy through 2020
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Example: Effect of US emissions since 1990 on the Brazilian economy through 2020
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Example: Effect of US emissions since 1990 on the Brazilian economy through 2020
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Example: Effect of US emissions since 1990 on the Brazilian economy through 2020
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Can do damages from individual emissions as well:
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Some key challenges

* We lack comprehensive damage functions for important
exposures

* In particular: floods, storms where “indirect” impacts are likely very
important

* The more local you want to go on impacts, the less confident
we will be in the attribution

» Get statistical power from pooling across lots of units
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