Attributing climate impacts to specific emitters

Marshall Burke

Doerr School of Sustainability, Stanford

With thanks to co-authors Sol Hsiang, Noah Diffenbaugh, Mustafa Zahid

NAS Extreme event meeting, Apr 1 2025

Rapid scientific advances in impact attribution

Key pieces include improved understanding of

- 1. how outcomes *y* respond to local changes in climate variable *c*
- 2. how anthropogenic emissions alter global climate, and in turn c

Rapid scientific advances in impact attribution

Key pieces include improved understanding of

- 1. how outcomes *y* respond to local changes in climate variable *c*
- 2. how anthropogenic emissions alter global climate, and in turn *c*

Some implications and key points:

- 1. Doing this credibly often does <u>not</u> involve saying anything about extremes specifically
- 2. Because GHGs are well mixed, can now fairly credibly link (some) specific damages to specific emissions/ emitters

Playbook for specific emissions \rightarrow specific damages:

Playbook for specific emissions \rightarrow specific damages:

Year

"Damage functions" well estimated for many sectors, outcomes

Estimation uses causal inference techniques that exploit longitudinal data

Areas where we know a lot:

Ag = f(temperature, drought) Health = f(temperature, TCs) Violence = f(temperature) Energy use = f(temperature) Economic output = f(temp, rainfall, TCs)

Example: temperature and mortality

Well-established U-shaped relationship

Example: temperature and mortality

Well-established U-shaped relationship

The vast majority of temperature-attributed deaths happen at moderate cold or heat

Extreme days are more deadly but WAY less common.

Overall impacts are then driven mainly by changes in moderate days.

Burke, Wilson et al *in prep*

Example: temperature and output

Extremes (# hot days, temperature variance, extreme rainfall) add a bit of extra explanatory power, but signal dominated by annual average temperature

This is very well mapped to emissions!

С

Can do damages from individual emissions as well:

 \$1
 \$10
 \$50
 \$150
 \$500
 \$5,000
 \$25,000

 Additional long-haul (8000km) flight per year
 Using a gas furnace instead of a heat pump
 Image: starting an average American diet instead of a vegetarian diet

 Driving 10% more than an average American
 Image: starting an average American
 Image: starting an average American

 A serving of beef/month
 Image: starting an average American
 Image: starting an average American

 Not recycling
 Image: starting an average American
 Image: starting an average American

a Cumulative damages (through 2100) of a decade (2010-2020) of invdividual behaviors

D Present value of future cumulative damages (through 2100) of celebrities private jet emissions in 2022 (thousands of \$)

0	\$250	\$500	\$750	\$1,000	\$1,250	\$1,500	\$1,750
Bill	Gates (%0.0013 of net v	vorth)					
Jeff	Bezos (%0.0011)						
Flo	d Mayweather (%0.274	5)					
Elo	n Musk (%0.0007)						
Pur	na/Jay-Z (%0.1139)						
Tay	lor Swift (%0.2538)						
Ste	ven Spielberg (%0.0121))					
Kin	Kardashian (%0.0938)						
A-F	lod (%0.2338)						
Mai	k Wahlberg (%0.2415)						
Trav	/is Scott (%1.3117)						
Dar	Bilzerian (%0.297)						
Kyli	e Jenner (%0.0823)						
Jac	k Nicklaus (%0.1418)						Damages 20

Some key challenges

- We lack comprehensive damage functions for important exposures
 - In particular: floods, storms where "indirect" impacts are likely very important
- The more local you want to go on impacts, the less confident we will be in the attribution
 - Get statistical power from pooling across lots of units