INTEGRATING MECHANISTIC MODELING
WITH MACHINE LEARNING TO EVALUATE
RADIOTHERAPY AND CHEMOTHERAPY
OUTCOMES IN HEAD AND NECK CANCER

Igor Shuryak'®, Everest Yang'-2, Ria Vasishtha'-3, Andrew Hope*,
Eric Wang', Xiao Wu®, Yading Yuan®, David J. Brenner'#,
Lisa A. Kachnic®, Lugman K. Dad®

1 Center for Radiological Research, Columbia University Irving Medical Center, USA
2 Department of Computer Science, Brown University, USA
3 Department of Mathematics, Columbia University, USA
4 Department of Radiation Oncology, Princess Margaret Cancer Centre, Canada
5 Department of Biostatistics, Columbia University Irving Medical Center, USA
6 Department of Radiation Oncology, Columbia University Irving Medical Center, USA



Integrating Mechanistic and ML Models

» Mathematical modeling in radiation biology/oncology has a long history (e.g. LQ model).
» Such models are based on diverse data sources: animal, in vitro, human clinical data.

» However, these models are simple and cannot include multiple relevant features: patient
demographics, treatment and disease details, omics and imaging.

» In contrast, ML methods can integrate multiple features and modalities, generate accurate
predictions, but are not as easy to interpret (“black box”).

> It makes sense to integrate these two approaches together to make more accurate
and interpretable models: concepts from simple models, like Biologically Effective Dose
(BED), can enter into ML models as engineered features.

» This integration improves interpretability of ML models and can guide clinically actionable
Insights.

» By incorporating mechanistic elements, ML models can also benefit from a broader
knowledge base, not limited to just the current dataset (especially if that dataset is
small/limited).

» Here we present an example of integrating mechanistic and ML models on tabular clinical
data, and our future plan is to extend this to multi-modal analysis incorporating image data.



Example: Modeling Tumor Repopulation in HNSCC
» Tumor repopulation is known to be a strong factor in HNSCC radiotherapy outcome.

» Shortening the radiotherapy helps to reduce the effect of repopulation because there is
less time for tumor cells to proliferate, while gaps in treatment have the opposite effect.

» This was recognized a long time ago, leading to a model called the Withers “*hockey
stick”. In this model, accelerated repopulation (AR) is assumed to start at a fixed time

(T,) after RT begins, and AR rate is assumed to be
iIndependent cell killing intensity.

» This can be called the Dose-Independent (DlI)
model.

» Our team was thinking how to improve this:

« Since AR is likely a compensatory response to cell
killing, the onset and rate of AR may depend on the
“intensity” of cell killing during treatment.

» This is the rationale for a “Dose-Dependent (DD)”

model.
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Applying DI and DD Models to HNSCC Data

» First, we fitted them to RT-only arms of older clinical trials (aggregated data).

» Then, we used them on a modern large dataset (RADCURE) on 2,651 patients with
HNSCC with comprehensive radiotherapy, chemotherapy, clinical variables, and
long-term cause of death data, from PMH in Toronto, Canada.

» In the RADCURE analysis we used a two-step approach that combines mechanistic
modeling concepts with ML: Random Survival Forests (RSF) for an exploratory
analysis followed by Causal Survival Forests (CSF) for a focused causal analysis.
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BED for DI and DD Models

» BED consists of a cell killing term (LQ model) and a repopulation term.
DD model specifics:
 Killing term is the same as in DI model

* Repopulation term differs:
» AR starts when —In(cell surviving fraction) decreases below a constant —C

» AR rate is proportional to the average fraction of cells killed per day
Simplification assumption:
» Assume BEDp, = BE, for standard RT of 35 x 2 Gy over 7 weeks
« This helps calculate C, eliminating it as a free parameter and simplifying the
model
Parameters and their meanings (plausible values):
a = 0.2 Gy ": Cell sensitivity to radiation (linear term)
a/B = 10 Gy: Ratio of L/Q cell sensitivity parameters
Ao = 0.2 days™': Fixed AR rate for DI model
App = 0.5 days™": Maximum AR rate for DD model
T, = 28 days: Fixed AR onset time for DI model



Simple Website
Implementation
of Dl and DD
BEDs

» We implemented
these BED
formulas in a
simple website
application using
GitHub and Shiny
R package:
https://ishuryak.shi
nyapps.io/custom__
bed calculator/

Advanced BED Calculator

Number of dose fractions (m):

35

Doselfraction (d) in Gy:

2

Total treatment time (T) in days:

52

Linear tumor cell Killing parameter (a) in 1/Gy:

0.2

Alphal/beta ratio (a/f) in Gy:

10

Accelerated repopulation rate (DI model):

0.2

Max repopulation rate (DD model):

0.5

Time to accelerated repopulation (days):

28

1»

Results:

DI model BED (Gy): 6@
DD model BED (Gy): 64.69

* In this example,
“standard” fractionation
was used, but the
treatment time was
extended by 5 days as
an “unplanned” event.

* |t shows that the BED
values for the DI and
DD models are not the
same in such scenarios
due to different handling
of repopulation.



Behaviors on RADCURE data

» In a simple Cox regression model, BED, (but not BED,) was a significant predictor of
overall survival.

coef exp(coef) se(coef) z Pr(>|z])
BED_DI 8.8089276 1.009320 ©0.005812 1.596 ©.11646
BED DD ©.937980 0.962732 ©0.013246 -2.867 0.00414 **
Age ©.830824 1.031304 ©.003337 9.236 < 2e-16 ***
Sex ©.854472 1.055983 ©.078374 ©.695 0.48704
Smoking_ PY ©.809133 1.009175 ©.00120 7.612 2.69e-14 ***
Stage numeric ©.544222 1.723268 ©.041860 13.901 < 2e-16 ***
HPV Positive -1.137305 ©.320682 ©.097512 -11.663 < 2e-16 ***
HPV_Unknown -9.342279 ©.710150 0.078626 -4.353 1.34e-95 ***
Chemo -9.528934 ©.589233 0.086121 -6.142 8.l1l6e-10 ***
RT vyear -9.047312 ©.953799 ©.011288 -4.191 2.77e-05 ***
Signif. codes: © “***’ g @@l “**’ @.01 “*’ ©.85 . 0.1 ° ° 1



» In a more complex (but flexible) random survival forest (RSF) model on the
same data, both BEDp, and BED were associated with reduced mortality.

» BEDy had a more monotonic effect.
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» Of course, these are predictive (not causal) models.
» The patterns can be affected by confounding.
» Next step — causal ML models.
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Causal Machine Learning (CML)

» Using ML to study causal effects seems counterintuitive, since ML is commonly
used for predictive tasks which operate with correlations/associations — and
correlation and causation are conceptually different

» However, causal ML techniques exist, and this field is evolving rapidly because
exploring causality is scientifically important

» Key advantages of causal ML (CML):

*» For personalized medicine, it is important to study heterogeneous treatment effects (i.e.
how do the treatment effects vary by disease details, mutations, patient demographics)
to identify which patients / subgroups benefit most / least from a particular treatment

** Unlike correlations, causal effects can better translate to other data sets where the data
distributions and correlation structures can be different

*» Observational clinical data (which are much more widely available than RCTs) can
potentially provide causal insights about treatment effects using CML — not as reliable
as RCTs of course, but more reliable than predictive modeling techniques

¢ CML can also be useful for clinical trials data to identify subgroups whose response to
the treatment may differ strongly (even in sign) from the average population’s



In predictive tasks, there are two types of
variables: inputs (X, features, predictors) and
outputs (Y, outcomes, targets).
In contrast, in the causal framework, the cause
(often called treatment, T) is conceptually distinct
from other features (X).
So, causal tasks involve three types of variables:
inputs (X), interventions (T, which represent the
treatment / causal variable), and outputs (Y).
In CML methods described below, we operate
under specific assumptions derived from domain
knowledge:
» Xcan cause T, both X and T together can
cause Y, and importantly, T does not cause X.
Main assumptions:
No unmeasured confounding/ignorability = all
variables that influence both the treatment and the
outcome are observed and accounted for.
Overlap/common support/positivity = every
individual has a positive probability of receiving
each treatment level.

X Y
(many features, (outcome, like
including — | tumor control
potential or toxicity)
confounders)

This is the causal
effect of interest

T
(treatment or
causal variable,

like radiation
dose or BED)

Our main objective is to quantify
the causal effect of Ton Y.
Meanwhile, the effects of Xon T
and X on Y can be treated as
‘nuisance parameters”. 1



Double Debiased Machine Learning (DML)

» DML (v. chernozhukov et al., https:/arxiv.ora/abs/1608.00060 ) iNVolves the
following steps:

A/
0‘0

Model the treatment (T) based on the covariates (X),

using any ML method. This is a “de-confounding”
operation.

Model the outcome (Y) based on the covariates (X),

using any ML method, but ignore the treatment. This is for *
“de-biasing/de-noising”.

Build a third model to relate the residuals from the first
two models to each other — this relationship is

interpreted as the causal effect. Also include X in this
model. .
In place of unknown true treatment effects, this method
involves using differences between observed and ML-
predicted values for “nuisance functions”: dependences of
T and Y on X. This is used to achieve “orthogonality”,
reducing sensitivity to nuisance functions.

AN

DoubleMVL

DML is doubly robust: it can
provide reliable causal effect
estimates if either the treatment
our outcome model (but not
necessarily both) is correctly
specified.

In practice, the nuisance
function models need to be
reasonably accurate but not
perfect, and can be generated
using any ML method, provided
cross-fitting is used.


https://arxiv.org/abs/1608.00060

Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized Random Forests". Annals of Statistics, 47(2), 2019. /

/
Causal Forest (CF)  Causal forest *" &%
https://grf-labs.github.io/grf/reference/causal forest.html

1. Data Splitting 4. Tree Generation
/ * Honestly split data into two parts: » Create trees by:
O » Splitting sample: Determine tree structure » Splitting features to maximize treatment effect heterogeneity
 Estimation sample: Calculate treatment effects * Partitioning feature space into leaves

* Estimating a constant treatment effect within each leaf:

2. Preliminary Estimation
* Calculated as the coefficient from regressing Y_residual on T_residual within

¢ Estimate separate machine learning models: the leaf
» Conditional mean of outcome: 7(X) = E[Y | X] « This single coefficient represents the treatment effect for all observations in
* Propensity score: é(X) =P(T =1| X) the leaf

2 Residual Calculation 5. Treatment Effect Estimation

« Compute residuals: * Apply determined tree structure to estimation data

A * Assign weights (2 ) based on:
« Residualized outcome: Ysesiqual = ¥ — (X)) ign weights a(z)

+ Residualized treatment: Thegiqual = T’ — é(X) * Fraction of trees where training point falls in same leaf as test point

* This fraction represents proximity/similarity in feature space

6. Final Prediction

 Compute weighted average of treatment effects


https://grf-labs.github.io/grf/reference/causal_forest.html

Using CML on Survival Data Like RADCURE

» Here the outcome is overall survival, so we used the causal survival forest (CSF) —
a CF variant which uses censoring-robust estimating equations.
» CSF incorporates models for the treatment propensity score, for the censoring
probability, and for the survival time.
» It assumes that the censoring process is random, conditional on the covariates.

gr‘f m Get started Reference Tutorials = Algorithm reference Developing Changelog

Causal survival forest

Source: R/causal survival forest.R

Trains a causal survival forest that can be used to estimate conditional treatment effects tau(X) with right-censored outcomes.

Estimands: Survival probability (SP) or Restricted Mean Survival Time (RMST). SP
= "vertical" difference in survival probabilities between treated and untreated groups
at a specific time (horizon). RMST = "integral" of the SP difference from time zero
up to the horizon time.



Causal analyses on RADCURE suggested that high BEDy or BED, increased patient restricted
mean survival time (RMST) by 0.5-1.0 years and increased survival probability (SP) by 5-15%
several years after treatment.
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Causal effect estimates of BEDgp from the CSF analyses. The boxplots show the distributions of restricted mean survival time (RMST) (A) or survival
probability (SP) (B) causal effects over 10-fold cross validation folds on the training data.
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Kaplan-Meier Survival Curves
trainSet_W=0 trainSet_W=1

Causal ML Analysis for Chemotherapy

» About 37% of patients received chemotherapy.

> Its effect is evident even in a “naive” univariate KM
curve comparison.

» We used CSF to estimate the chemotherapy effect
more rigorously in a causal framework, considering
other variables.

» Elastic net regression was used for propensity score

prediction.
» Patients with propensity scores <0.1 or >0.9 (those

very unlikely or very likely to get chemotherapy) were
dropped from analysis to generate stable causal effect

estimates.
» The propensity scores varied by tumor site.

» They tended to increase with tumor Stage and . |
radiotherapy BED, and to decrease with Age. - W WT
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o
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» Summary statistics for some

variables of interest

Age [Sex Stage [Chemo
(0=F, (0=NO,
1=M) 1=YES)
Min 22.300 O 0 0
Max 90.00 1 4 1
Mean 63.49 0.81 | 3.21 | 0.37
Median, 63.10 1 4 0
25% 55.90 1 2 0
75% 70.80 1 4 1

» Distribution of chemotherapy by

age and stage
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CSF results: chemotherapy increased survival probability by 15.2 * 6.0% at 3 years and
15.0 £ 6.7% at 5 years on the testing set.

RMST improved by 3.6 £ 1.4 months at 3 years and 7.1 £ 2.6 months at 5 years.
Considerable heterogeneity between patients is seen in the histograms.

Distribution of Treatment Effects at 60 month Horizon (SP)

Distribution of Treatment Effects at 60 month Horizon (RMST)
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Future Directions: Incorporating Image Data

» The RADCURE data set also contains CT images and radiomics features

extracted from them.
» Combining the tabular clinical data and image features into a more powerful

analysis seems very promising for our team: several members have image
analysis expertise.

Yading Yuan ORCESTRA for Radiomics

hmia b e _ o .

o " Explore multimodal Radiomics Datasets (Radiomic sets)
- Andrew Hope

MD, FRCPC

Xiao Wu, PhD

Assistant Professor of Biostatistics

= xw2892@cumc.columbia.edu




Conclusions

We combined simple mechanistic mathematical modeling concepts with predictive
and causal ML methods to investigate the effects of radiotherapy and
chemotherapy on HNSCC patient survival in the large RADCURE data set.

High BED,, or BEDj, and chemotherapy, significantly increased RMST and
survival probability several years after treatment. The magnitudes of these causal
effects varied substantially between patients.

These findings are in line with current knowledge, but chemotherapy effect
estimates are larger than in published meta-analyses, possibly due to the tendency
for younger/healthier patients to receive chemotherapy more frequently, other
population differences, incomplete fulfillment of causal modeling assumptions, and
evolving treatment protocols.

This study presents an example of implementing the concept of incorporating
mechanistic modeling insights into ML analyses of cancer treatment data.

We think that this type of approach has a lot of potential for enhancing knowledge
about treatment effects from non-randomized clinical data to complement RCT
analyses, generate new hypotheses, and support personalized medicine.



Thank you very much for your interest!

My email is: is144@cumc.columbia.edu
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