PhET Interactive Simulations

Successes and Challenges in Scaling Innovation and Impact

Kathy Perkins

Director, PhET Interactive Simulations University of Colorado Boulder

Presented to the Board on Science Education, PreK-12 STEM Education Innovations Study Committee, 12/07/2023

FOUNDED IN 2002 BY CARL WIEMAN:

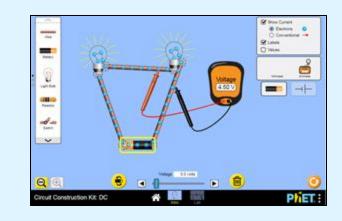
2001 Nobel Prize in Physics

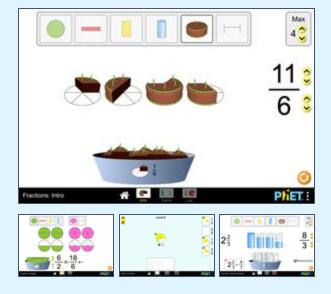
PhET (Physics Education Technology)

Launched with Funding From: NSF Distinguished Teaching Scholar (\$300K) Nobel Prize Award (~\$300K) Kavli Foundation (~\$500K)

PhET has received multiple NSF grants for **new** research and development, including:

NSF (2001) Distinguished Teaching Scholar NSF CCLI (2008) College Physics & Chemistry NSF DRK12 (2010) Middle School Science NSF TUES (2012) College Chemistry NSF DRK12 (2015) Accessibility NSF DRK12 (2015) Middle School Math NSF DRK12 (2016) Sound and Sonification


GOAL:Image: ConstructionImage: ConstructionTO MAKE STEMImage: ConstructionConnect to everyday lifeLEARNINGImage: ConstructionIntuitive & understandableMORE...Image: ConstructionDevelop conceptual understanding

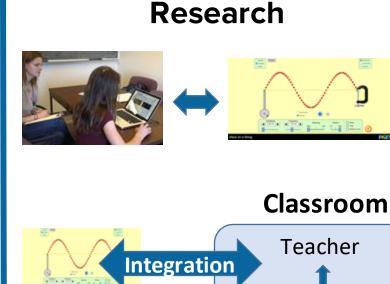

☑ **PERSONAL** Elevate student agency and voice

Make learning STEM more like doing STEM

....THROUGH POWERFUL PEDAGOGICAL TOOLS.

Used 1.4+ billion times!

Circuit Construction Kit Grade 3 - College 12M uses/yr


Fractions Suite Grade 1 - 5

3M uses/yr

BY FOCUSING ON...

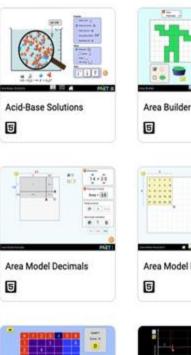
Product Development

Student 🔶 Student

Teacher Professional Development (2021+)

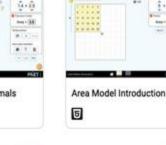
TODAY (21 years later)

Total Investment:

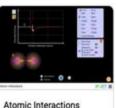

~\$39M total ~\$11.5M by NSF (to PhET)

Current Annual Budget: \$4M/year

Core team of 35 staff


https://phet.colorado.edu

169 simulations (108 in HTML5)



		1	81111
		0	1-121-11 2-1-12-16
		e.	(*(·)-
		_	
_			
Are	a Mod	del Alge	PAR
Are	a Mod	del Alge	PAR

Area Model Multiplication

5

Balancing Act

PhET'S IMPACT AND GROWTH

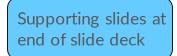
IMPACT OF PhET SIMULATIONS

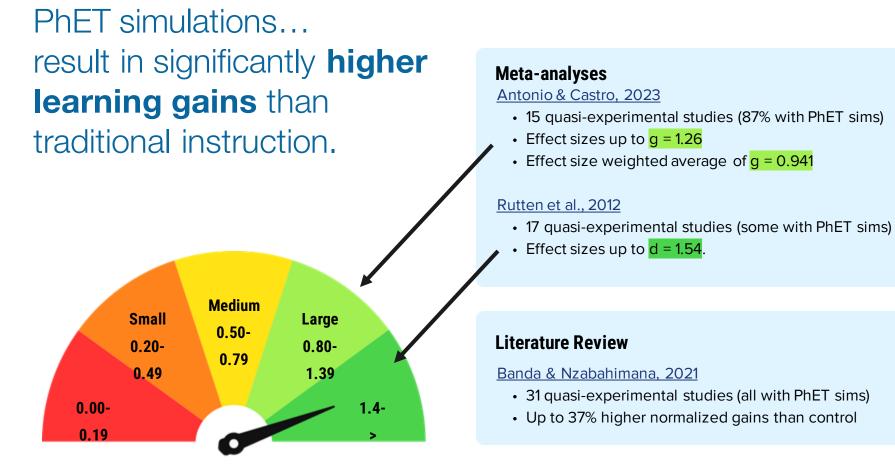
Transform classroom instruction

- support transition from teacher-centered → student-centered
- more inquiry, discourse, student agency

Increase student achievement in disciplinary core ideas

- deeper conceptual learning
- higher learning gains


Develop STEM practices


- actively engage students in the NGSS practices
- make learning STEM more like doing STEM

Improve student attitudes about science

Close the learning gap

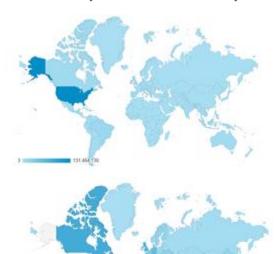
• ensure equity, especially for marginalized students

Effect Size

USE OF PHET SIMULATIONS

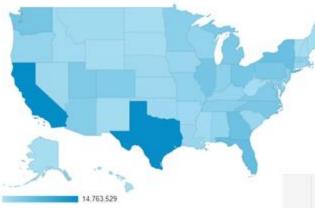
Usage: Sim Runs Online per Year

Sim Runs Online (Millions)

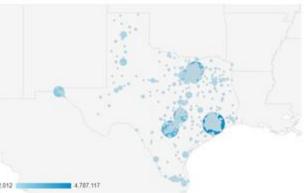

> *(Use Oct-Dec 2023 estimated; 2023-24 school year showing 10% use growth)

1.4 billion sims delivered globally in 120 languages

~50% of usage in USA

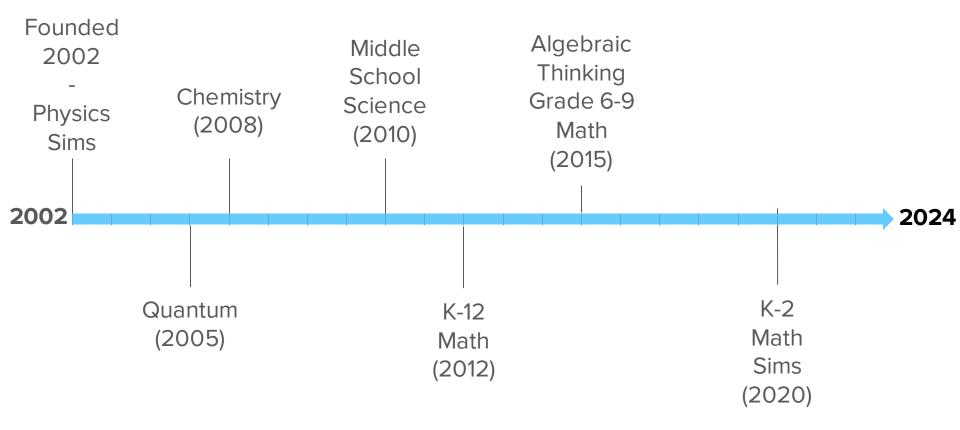

USE OF PHET SIMULATIONS

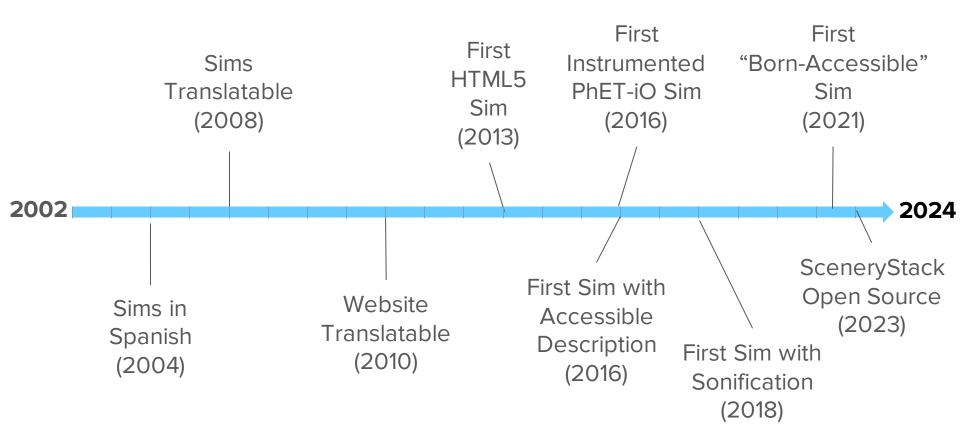
Around the world (USA ~50%)


US excluded

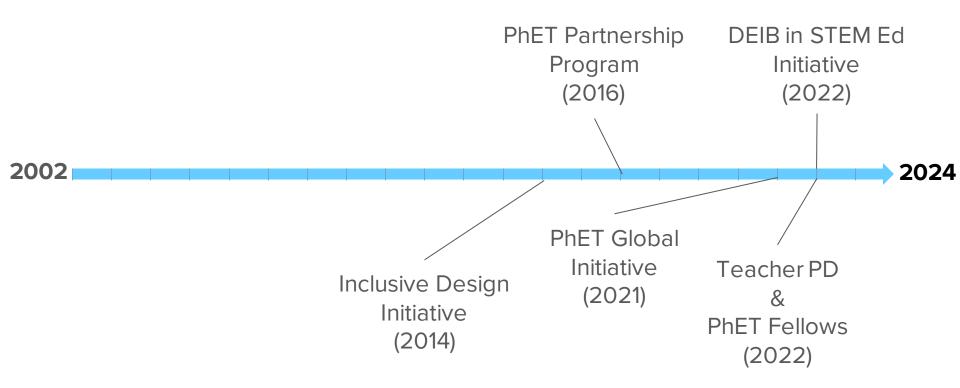
Across the USA

Over 600 towns in Texas


Across each State


USE OF PHET SIMULATIONS

In over 50 education products			G Angaza Elimu	BMG	BOXLIGHT
D LEGENDS # LEARNING	LOHO		Brain POP	Cengage	() Classera®
Rearning Rearning	, Ba	Graw Education	Curriki	EDUCATION	ер
Nor of Mark	loorpod 🔕	NELSON	polytech		SESI Serviça Social de Industria FELO PUTURO DO TRABALIRO
NROC PROJECT	NUITEQ	Odysseyware ⁻	SCIENCE	Simply science	STEMscopes"
O'Genius	open stax -	Pearson	Strathmore University Community Service Center	K SUMMIT K12	THACK - STOCKLI
PENDA	pivot		Universidad Andres Bello-	V E R T A S	🔀 vigileam


PHET CONTENT EXPANSION

PHET TECHNOLOGY ADVANCEMENT

PHET INITIATIVES AND PROGRAM EXPANSION

MISSION-DRIVEN BUSINESS MODEL

DIRECT-TO-CONSUMER

BUSINESS-TO-BUSINESS

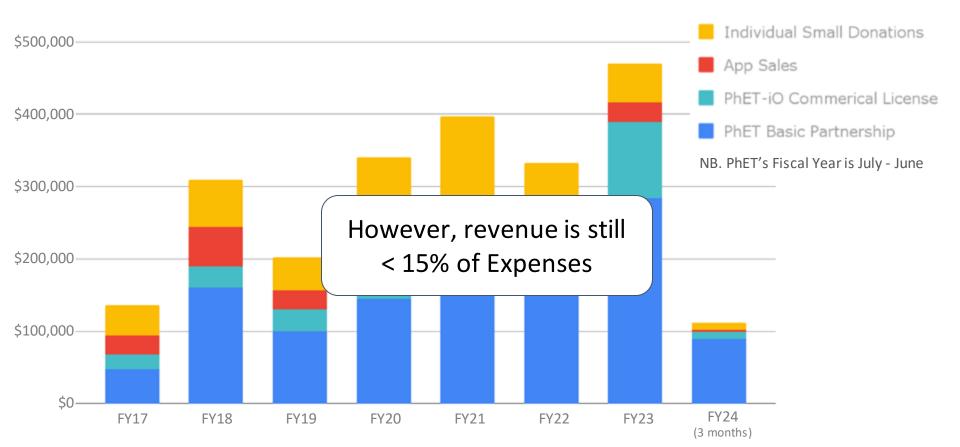
FREE PHET WEBSITE

LOW-COST PHET APP

\$0.99 purchase

BASIC PARTNERSHIP

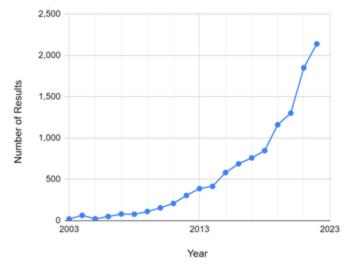
EMERGING PRODUCT



\$10,000/year

per-student licensing, revenue share or usage-based

+ donations from individual users


REVENUE GROWTH SINCE 2017

RESEARCH AND IMPACT STORIES

Studies of PhET sims document positive impact (13,200 Google Scholar Results)

Google Scholar Search: "phet simulation education"

By way of comparison, Khan Academy has 17,500 results in the same period. Other well-known products are typically in the 100 - 2,500 citations

Stories of PhET's Impact around the world

THREATS AND LIMITATIONS TO SCALING AT PhET

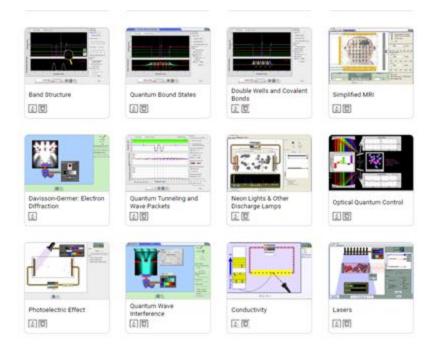
EXISTENTIAL THREATS TO PHET


2008: Carl Wieman left CU Boulder and PhET leadership

• Kathy Perkins stepped in as (co-)Director

2010 & 2011: Disruptive technology changes in education

Ongoing: Soft funding ... no base funding
 Pieced together with


TECHNOLOGY CHANGE AND MAINTENANCE

TECHNOLOGY CHANGE AND MAINTENANCE

60 legacy PhET sims remain in Java and Flash, including many popular physics sims and 18 quantum sims (CHIPS Act)

Impact? loss of access & use
Why? lack of funding resources

LIMITATIONS TO SCALE

- Have not yet redesigned and redeveloped all the sims to HTML (~60 remaining).
- Could have much more content coverage.
- Unable to focus on professional development until 2021.
- Have not yet scaled the inclusive design features, even though we know the solutions.

RECOMMENDATION S FOR THE PANEL

Challenge common assumptions:

- 1. There exists an effective business model for each evidence-based innovation in STEM Ed.
- 1. We need to fund *new* innovation, prioritizing *tomorrow*'s challenges over *today*'s.
- Existing governmental educational frameworks are sufficient for supporting STEM teachers.

Assumption 1: There exists an effective business model for each evidence-based innovation in STEM Ed.

- PhET and many other Open Education Resources are not compatible with most business models and may significantly restrict access.
- PhET sims would not have been produced by the private sector-they are too expensive and require too much specialized knowledge.
- PhET's efforts to commercialize products and generate revenue have come at the resource opportunity cost of maintaining, refining, and broadening our existing resources.

Assumption 2: We need to fund *new* innovation, prioritizing *tomorrow*'s challenges over *today*'s.

- The research community has established many effective teaching practices and tools that have yet to be adopted/institutionalized.
- The priority must be what's happening in the classroom. PhET simulations foster innovation in teaching.
- With "continuing grant" funding to support incremental innovation starting 20 years ago, PhET would have been much further along now.

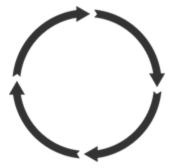
Assumption 3: Existing governmental education frameworks are sufficient for supporting STEM teachers.

- STEM teachers often lack access to deep STEM discipline-specific teacher PD through school districts and universities.
 - Lack of critical mass of STEM teachers per school/district
 - Need for high-specialized expertise to deliver PD
- The groups most capable of meeting this need are often least likely to be eligible for government funding (national or state)
 - STEM teacher professional societies
 - STEM projects (like PhET)
 - STEM teacher leaders (leveraging expertise)

Priority Recommendation

Provide **funding for sustaining and scaling** NSFgenerated STEM education solutions, including providing teacher PD in the use of solutions.

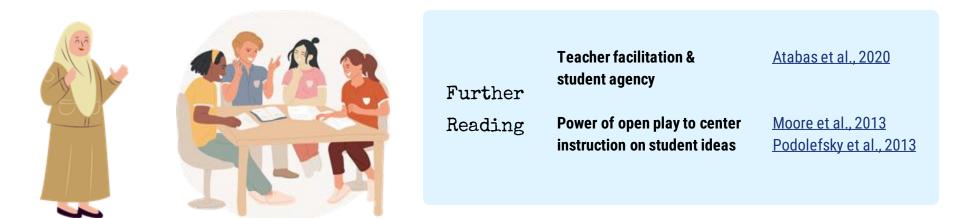
Use a **continuing grant structure** to support the maintenance and scaling of evidence-based projects.


• NSF science directorates have long recognized the need for long-term funding through continuing grants.

THANK YOU!

SUPPLEMENTARY SLIDES

PhET simulations... are developed with **research-based design** on learning.


PhET simulations follow a cycle of design, development, and testing that makes use of design research and discipline-based education research on common student prior knowledge, learning challenges, physical and cognitive differences, and motivation. *If we do not see expected outcomes in their use of the simulation, we do not publish it, and go back to design.*

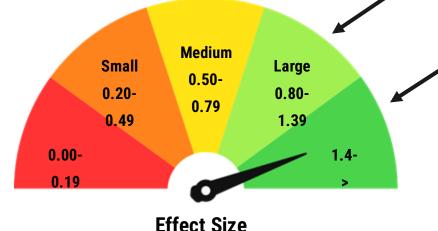
	Foundational design principles	<u>Adams et al., 2008a</u>	<u>Adams et al., 2008b</u>	Podolefsky et al., 2010
Further	Inclusive features	<u>Moore et al., 2015</u>		
Reading	Role of play and exploration	Whitacre et al., 2018		

PhET simulations...

support teachers to **transition from teacher**centered to student-centered instruction.

Teachers who make use of PhET simulations inherently see shifts in their classroom dynamics, including more student talk, inquiry, and agency.

PhET simulations... result in significantly **higher learning gains** than traditional instruction.


When teachers use PhET simulations paired with active learning, inquiry-based strategies, students learn substantially more than through traditional instruction. In many cases, using PhET simulations can be more effective than using physical equipment, especially when topics involve abstract concepts.

These findings generally hold true across

- Gender (males, females)
- Discipline (science, math)
- Socioeconomic contexts

PhET simulations... result in significantly **higher learning gains** than traditional instruction.

Effect sizes represent the magnitude of difference in performance by students who received the intervention (use of interactive simulations) vs. those who received traditional instruction.

Meta-analyses

Antonio & Castro, 2023

- 15 quasi-experimental studies (87% with PhET sims)
- Effect sizes up to g = 1.26
- Effect size weighted average of g = 0.941

Rutten et al., 2012

- 17 quasi-experimental studies (some with PhET sims)
- Effect sizes up to d = 1.54.

Literature Review

Banda & Nzabahimana, 2021

- 31 quasi-experimental studies (all with PhET sims)
- Up to 37% higher normalized gains than control

PhET simulations... help **close the learning gap** between males and females.

PhET simulations do not discriminate against gender. Males and females demonstrate similar performance as a result of PhET-based teaching interventions.

Further	Physics	Pember & Achor, 2018
Reading	Chemistry	Ajijolajesu et al., 2019

PhET simulations... support the development of STEM **process skills**.

The use of PhET simulations supports laboratory skills and habits of mind that are essential to success in STEM.

	Lab Skills	<u>Taibu et al., 2021</u>
Further Reading	Coordinating Representations	Podolefsky et al., 2010
IICAULIE	Science Communication	<u>Rosero et al., 2022</u>

PhET simulations... **improve students' attitudes** about learning STEM.

Students in research studies involving PhET simulations often demonstrate high levels of engagement, and report increased motivation interest in learning about STEM in diverse contexts, including minority-serving institutions and community colleges.

Further	USA	<u>Salame & Samson, 2019</u> <u>Salame & Makki, 2021</u> <u>Taibu et al., 2021</u>
Reading	Africa	<u>Chumba et al., 2020</u> <u>Ramnarain & Penn, 2021</u>
	Europe	Rutten et al., 2015
	Latin America	<u>Díaz-Pinzón, 2016</u>

