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Introduction & Background



Question: What is the effect of a treatment (W) on an outcome (Y)?
Key concept: Potential outcomes

Fundamental problem of causal inference: we can only observe 
one of the potential outcomes for a unit at a given time

Causal Inference

𝑌𝑌𝑖𝑖(1)
Outcome that would have 

been observed if unit i 
received the treatment

𝑌𝑌𝑖𝑖(0)
Outcome that would have 

been observed if unit i 
received the control



Motivation…

• The holy grail: determining “what works for whom”
• Treatment effect heterogeneity / modification / 

moderation
• Do treatment (causal) effects vary across individuals?
• Can we use this to inform treatment decisions for 

individuals?
• That would be great . . .



Causal effect: Difference in potential outcomes under treatment 
versus control

What if the effect of the treatment depends on covariates, 𝑿𝑿?

Causal Estimands

Conditional average treatment effect 
(CATE)

𝜏𝜏 𝑿𝑿 =  𝐸𝐸(𝑌𝑌(1) –  𝑌𝑌(0)|𝑿𝑿)

Average treatment effect 
(ATE)

𝛿𝛿 =  𝐸𝐸(𝑌𝑌(1) –  𝑌𝑌(0))



Randomized controlled trials:
• Unconfounded treatment 

assignment (random)
• Often powered to detect main 

effects (ATE) rather than effect 
heterogeneity (CATE)

Challenge

Observational data: 
• Confounded treatment assignment
• Larger and often more 

representative of target population

Potential solution: Data integration



Combining Data Sources

• Can we get the best of both worlds?
• Combine the unbiasedness of trials with the large size and 

representativeness of non-experimental studies?
• LOTS of methods work in this area right now, known sometimes 

as data fusion, data integration, hybrid designs, individual 
patient data meta-analysis, . . .

• So far we have mostly been adapting machine learning and 
Bayesian methods to combine multiple randomized trials; 
eventually want to bring in electronic health record data too

• Machine learning methods allow for flexible identification of 
moderators, interactions, etc., with no need to prespecify



Review of Data Integration Methods



1. Stable Unit Treatment Value Assumption (SUTVA) in each study

2. Unconfoundedness: {𝑌𝑌(0),𝑌𝑌(1)}  ⊥ 𝑊𝑊|𝑿𝑿 in each study 

3. Consistency: 𝑌𝑌 = 𝑊𝑊𝑌𝑌(1) + (1 −𝑊𝑊)𝑌𝑌(0) almost surely in each study

4. Positivity of treatment assignment: There exists a constant 𝑏𝑏 > 0 such that 𝑏𝑏 < 𝑃𝑃(𝑊𝑊 = 1|𝑿𝑿 =
𝒙𝒙) < 1 − 𝑏𝑏 for all 𝒙𝒙 in each study

5. Positivity of study membership [Combining trials]: There exists a constant 𝑐𝑐 > 0 such that 𝑐𝑐 <
𝑃𝑃  𝑆𝑆 = 𝑠𝑠 𝑿𝑿 = 𝒙𝒙) < 1 − 𝑐𝑐 for all 𝒙𝒙 and 𝑠𝑠

6. Positivity of study membership [Extending to new setting]: There exists a constant 𝑑𝑑 > 0 such 
that 𝑑𝑑 < 𝑃𝑃(𝑆𝑆 ∈ {1, … ,𝐾𝐾}|𝑿𝑿 = 𝒙𝒙) < 1 − 𝑑𝑑 for all 𝒙𝒙 in the target setting

Causal Assumptions



Reviewed Approaches



Key Consideration: Data Level

Overview Benefits Challenges
Aggregate-Level Data 
(AD)

Summary-level data 
available

• Draw conclusions 
about average 
effects

• Easily accessible

• Aggregation bias
• Limited power to 

detect effect 
moderation

Federated Learning 
(FL)

IPD accessible within 
studies and only AD 
sharable across studies

• Maintain data privacy
• More control over 

analysis methods

• Less flexible than 
IPD

• Studies can only 
learn from each 
other on aggregate

Individual Participant-
Level Data (IPD)

Individual data available 
and shareable across 
all studies

• Highest modeling 
flexibility

• High power

• Unknown causes of 
study-level 
heterogeneity
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Key Consideration: Modeling Approach

Parametric
• Require distributional assumptions 

and pre-specification of 
hypothesized relationships

• Typically highly interpretable

• Might miss complex interactions or 
nonlinearities

Non-Parametric
• Do not require distributional 

assumptions or pre-specification

• Challenging to interpret

• More flexible



Combining RCTs to Estimate 
Heterogeneous Treatment Effects



• Combine IPD from multiple randomized controlled trials (RCTs)

• Common approach: Meta-analysis

• Our approach: Extend single-study non-parametric (machine 
learning) approaches to estimate the CATE in multiple trials

Approach



Question: Are medications for depression differentially effective? 
• Comparison of Duloxetine and Vortioxetine for individuals with 

major depressive disorder

Motivating Application: Depression Treatments

Duloxetine Vortioxetine
(Cymbalta)

SNRI; increases serotonin and 
noradrenaline
Used in practice at time of trials

(Trintellix)
Modulates receptor and inhibits 
serotonin transporter 
New at time of trials

Better than placebo Better than placebo



• Four RCTs* (n = 575, 436, 418, 418) with participants randomly 
assigned to Duloxetine or Vortioxetine

• Eligibility criteria:

• Outcome: Change in MADRS score from baseline to the last 
observed follow-up

Trial Data

*Baldwin et al., 2021; Boulenger et al., 2014; 
Mahableshwarkar et al., 2013; Mahableshwarkar et al., 2015

18-75 years old Had a major depressive 
episode lasting ≥ 3mo

Had MADRS score ≥ 22 or 
26 at screening & baseline 



Single-study methods
1. S-Learner
2. X-Learner
3. Causal Forest

Methods: Overview

Aggregation methods
1. Complete Pooling
2. Pooling with Trial Indicator
3. Ensemble Forest
4. Meta-Analysis



• Estimate conditional mean outcomes: 𝜇𝜇 𝑿𝑿𝒊𝒊,𝑊𝑊𝒊𝒊 = 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑿𝑿𝒊𝒊,𝑊𝑊𝒊𝒊) 
and then calculate the difference: 𝜇𝜇 𝑿𝑿𝒊𝒊, 1 − 𝜇𝜇 𝑿𝑿𝒊𝒊, 0

• S-Learner [Kunzel et al., 2019] 
• X-Learner [Kunzel et al., 2019]
*Base learner = random forest in this chapter; Bayesian additive regression 
trees in next chapter

• Forest-based algorithm: partition the covariates based on 
treatment effect heterogeneity

• Causal Forest [Athey et al., 2019]

Single-Study Methods



Aggregation Methods

Complete Pooling: Treat all data as if it were from a single study – pool together 
and then apply one of the single-study approaches

Trial 1

Trial 2

Trial K

Pooled data 
with no trial 
membership 

Fit single-study method

…



Aggregation Methods

Pooling with Trial Indicator: Pool all data together but keep study as an indicator 
and include that as a covariate in the single-study approaches

Pooled data 
with trial 

membership 

Fit single-study method

Trial 1

Trial 2

Trial K

…



Aggregation Methods

Ensemble Forest: Fit model within each study, apply each model to all individuals, 
and then fit an ensemble random forest to the augmented data

Trial 1

Trial 2

Trial K

Augmented 
data with K 
predictions 
per person

Fi
t s

in
gl

e-
st

ud
y 

m
et

ho
d

…

Predict according to trial 
1, trial 2, …, trial K models

Fit ensemble model



Meta-Analysis with fixed effects and random effects

𝐸𝐸 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝑎𝑎𝑖𝑖 + 𝜶𝜶𝑇𝑇𝑿𝑿𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑖𝑖𝑋𝑋1𝑖𝑖𝑖𝑖 + 𝛿𝛿 + 𝑐𝑐𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜃𝜃 + 𝑑𝑑𝑖𝑖 𝑋𝑋1𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖

Aggregation Methods



Meta-Analysis with fixed effects and random effects

𝐸𝐸 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝑎𝑎𝑖𝑖 + 𝜶𝜶𝑇𝑇𝑿𝑿𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑖𝑖𝑋𝑋1𝑖𝑖𝑖𝑖 + 𝛿𝛿 + 𝑐𝑐𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜃𝜃 + 𝑑𝑑𝑖𝑖 𝑋𝑋1𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖

The CATE is: τ(𝑿𝑿𝑖𝑖𝑖𝑖) = 𝛿𝛿 + 𝑐𝑐𝑖𝑖 + 𝜃𝜃 + 𝑑𝑑𝑖𝑖 𝑋𝑋1𝑖𝑖𝑖𝑖

Aggregation Methods



• 5 continuous covariates with low correlation
• Probability of treatment is 0.5

Simulation Setup

Parameters varied:
• Heterogeneity of effect across studies (low, medium, high)

• Form of CATE (piecewise linear or non-linear)

• Trial sample sizes (all 500, one large, half and half)

• Number of trials (10 or 30)



Simulation Results

Key Takeaways
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Simulation Results

Key Takeaways

• Complete pooling performs poorly in 
the presence of heterogeneity of the 
CATE across trials

• Meta-analysis performs well when 
correctly specified and poorly when 
incorrect (non-linear CATE)

• Causal forest performs consistently 
best with pooling with trial indicator or 
ensemble forest



• Applied methods explored in simulations to four RCTs comparing 
Vortioxetine (“treatment”) and Duloxetine (“control”)
 

• Focus on causal forest with pooling with trial indicator results

• Key question: How to interpret the non-parametric CATE estimates? 

Motivating Application: Depression Treatments



Interpretation Tree

Age < 31

Weight ≥ 65kg

Weight < 85kg

Weight ≥ 66kg

MADRS < 32

Anxiety < 27

Weight < 80kg

Weight ≥ 99kg

Anxiety < 26

Age < 36

Age < 46

Age < 65

Age < 43

0.74 1.5

1.9

1.8 2.2

2.8 2.9 2.9

2.6

3.7

2.7 3.2

3

2

yes no



Scatterplot of Treatment Effect by Age

Duloxetine better

Vortioxetine better



Uncertainty of CATE

Duloxetine better

Vortioxetine better



Conclusions



Open questions for this to be useful in practice

• How to interpret these results and findings?
• How to best summarize and illustrate them?
• What is the use of the fancy CATE models if in the end we probably 

go back to simple examination of individual moderators? Exploratory 
vs. confirmatory?

• How to fully account for uncertainty in the CATE estimates?
• How to predict effects for future individuals, not from an individual 

study?
• Is this a lot of work and fancy methods when in reality there often 

isn’t really any effect heterogeneity?



And what about the EHR data?

• Big methods questions about how to combine trial and non-
experimental data

• Different populations, confounding in the EHR data
• BUT also fundamental data comparison challenges: different 

covariates, different outcomes (service utilization vs. symptoms), 
etc.

• Unclear if there is much to be gained if the outcomes are different 
(without having to make lots of assumptions)

• So still a work in progress...stay tuned!



General lessons

• Need to be realistic about what we can learn about heterogeneous 
treatment effects, even when combining data sources

• Fancy methods can only get us so far:  Need high quality data, 
comparable measures, etc.  

• Look for methods that are transparent,
replicable, and with diagnostics

• Remember the fundamental problem of
causal inference!



Thank You!
Email: estuart@jhu.edu 

Website: www.elizabethstuart.org
X: @lizstuartdc

LinkedIn: @estuartdc 
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1. Estimate single conditional mean outcome function using 
random forest: 

𝜇𝜇 𝑿𝑿𝒊𝒊,𝑊𝑊𝒊𝒊 = 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑿𝑿𝒊𝒊,𝑊𝑊𝒊𝒊) 

2.  Directly calculate the CATE: �̂�𝜏 𝑿𝑿𝑖𝑖 =  �𝜇𝜇 𝑿𝑿𝒊𝒊, 1 − �𝜇𝜇 𝑿𝑿𝒊𝒊, 0

S-Learner



1. Estimate two conditional mean outcome functions using random 
forests: 𝜇𝜇 𝑿𝑿𝒊𝒊, 1 = 𝐸𝐸(𝑌𝑌𝑖𝑖(1)|𝑿𝑿𝒊𝒊) and 𝜇𝜇 𝑿𝑿𝒊𝒊, 0 = 𝐸𝐸(𝑌𝑌𝑖𝑖(0)|𝑿𝑿𝒊𝒊)

2. Estimate treatment effects for individuals in each group using the 
true data and the estimated outcome functions:

�𝐷𝐷𝑖𝑖: 𝐴𝐴𝑖𝑖=1 = 𝑌𝑌𝑖𝑖: 𝐴𝐴𝑖𝑖=1 − �𝜇𝜇 𝑿𝑿𝑖𝑖: 𝐴𝐴𝑖𝑖=1, 0
�𝐷𝐷𝑖𝑖: 𝐴𝐴𝑖𝑖=0 = �𝜇𝜇 𝑿𝑿𝑖𝑖: 𝐴𝐴𝑖𝑖=0, 1 − 𝑌𝑌𝑖𝑖: 𝐴𝐴𝑖𝑖=0

3. Regress with �𝐷𝐷𝑖𝑖 as outcomes to get �̂�𝜏1(𝑿𝑿𝒊𝒊) and �̂�𝜏0(𝑿𝑿𝒊𝒊) 

4. Define CATE as weighted average of �̂�𝜏1 and  �̂�𝜏0

X-Learner



• Causal tree involves recursive partitioning of the covariates to best 
split based on treatment effect heterogeneity (difference in 
average outcomes between treatment and control groups within 
leaves)

• Causal forest is an aggregation of causal trees using weights 
[Athey et al., 2019]

• Orthogonalization: before running the forest, two regression 
forests are trained to estimate propensity scores and marginal 
outcomes

• Then compute residuals W-e(X) and Y-m(X) and train a causal forest on 
those (R-learner) [Nie and Wager, 2021]

Causal Forest



• Sum-of-trees model
• Uses regularization prior to restrict the amount of relationships that 

each tree can explain
• (1) Prior prefers trees with few bottom nodes; (2) Shrinks terminal means 

towards 0; (3) Suggests standard deviation is less than least squares 
estimate

• Estimates the outcome and provides posterior draws to produce 
credible intervals

• Two options:
• S-Learner: 𝜇𝜇 𝑿𝑿𝒊𝒊,𝑊𝑊𝒊𝒊 = 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑿𝑿𝒊𝒊,𝑊𝑊𝒊𝒊) 
• T-Learner: 𝜇𝜇 𝑿𝑿𝒊𝒊, 1 = 𝐸𝐸(𝑌𝑌𝑖𝑖(1)|𝑿𝑿𝒊𝒊) and 𝜇𝜇 𝑿𝑿𝒊𝒊, 0 = 𝐸𝐸(𝑌𝑌𝑖𝑖(0)|𝑿𝑿𝒊𝒊)

Bayesian Additive Regression Trees (BART)
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