

Incorporating Geoprofessional Input into Improved Infrastructure Decision Making

Harold Magistrale
Principal Research Scientist
FM Global

Questions

When considering risk management, long-term, and lifecycle performance of infrastructure:

- Describe your job responsibilities and how and to whom you provide geological and geotechnical input?
- How and when is that information used to inform decisions, and what kind of decisions (e.g., related to risk for underwriting and evaluating exposure)?
- Have you seen changes in the way this input has been requested and used over time?
- How is geo-input used to inform monitoring, inspections, maintenance, or contractual changes of conditions?
- What are the most effective ways geoprofessionals can provide input to nongeoprofessional decision makers?

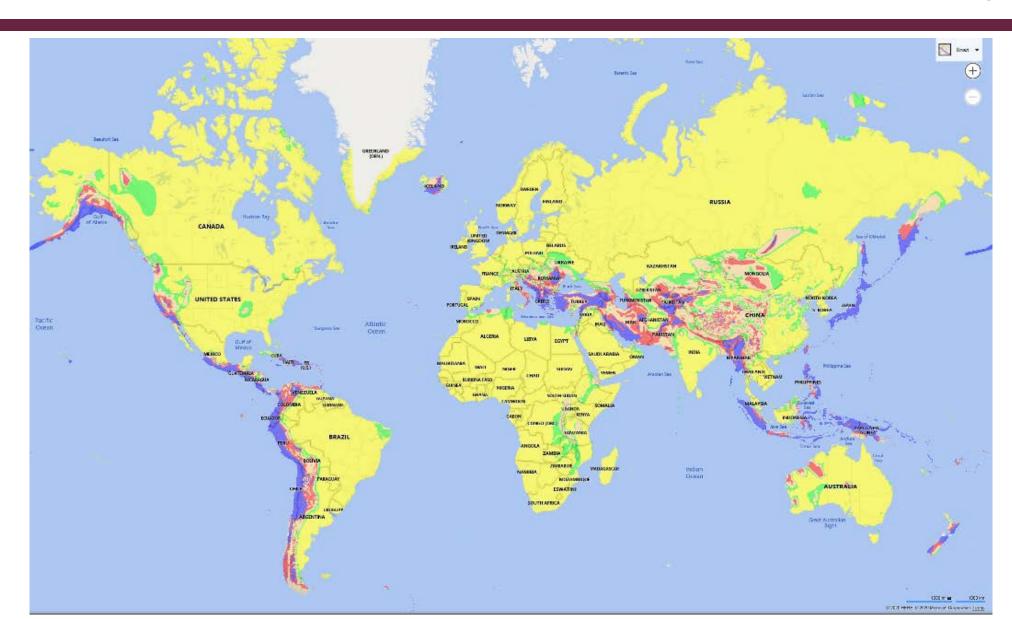
FM Global

- FM Global is a leading commercial and industrial property insurer (property loss and business interruption)
- One third of Fortune 1000 companies
- Business model is to identify potential losses and avoid them through engineering and scientific solutions – no actuaries
- Develop solutions in our Research Division
- Visit insured locations to spot problems and give advice
- Mutual organization enables long term view

Job responsibilities and how provide input

- Natural hazards teams use geological and geotechnical data to develop hazard and risk maps of perils
 - Underwriting. Underwriting decisions, aggregate
 - Engineering Standards. Develop operating standards
 - Field Engineers. Set levels of recommendations to clients and information gathered by field engineers

Typical Data

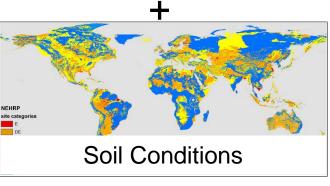


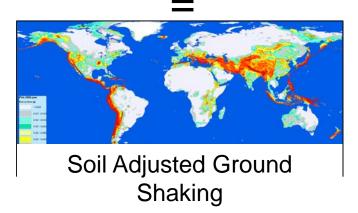
- Geological maps
- Topographic
- Geodetic

FM Global earthquake risk zones

Hazard

Vulnerability




FM Global EQ Risk Map

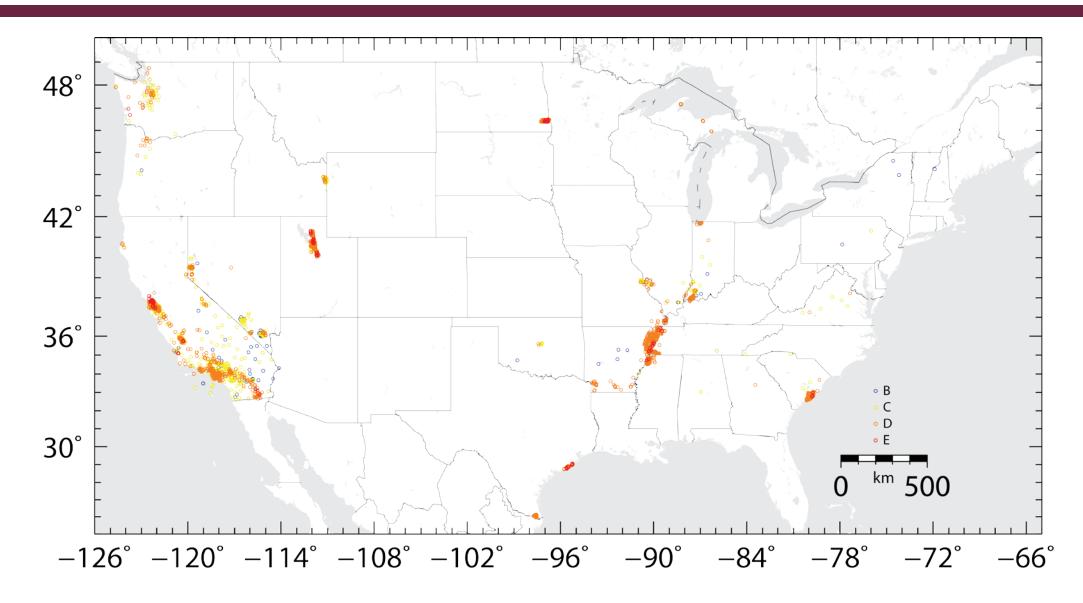
Picture of risk map

FM Global earthquake risk maps:

- PSHA
- Amplify ground motions use geology as a proxy for Vs30
- Compare to ground motion threshold for certain damage levels
- Plot return times of damaging ground motion

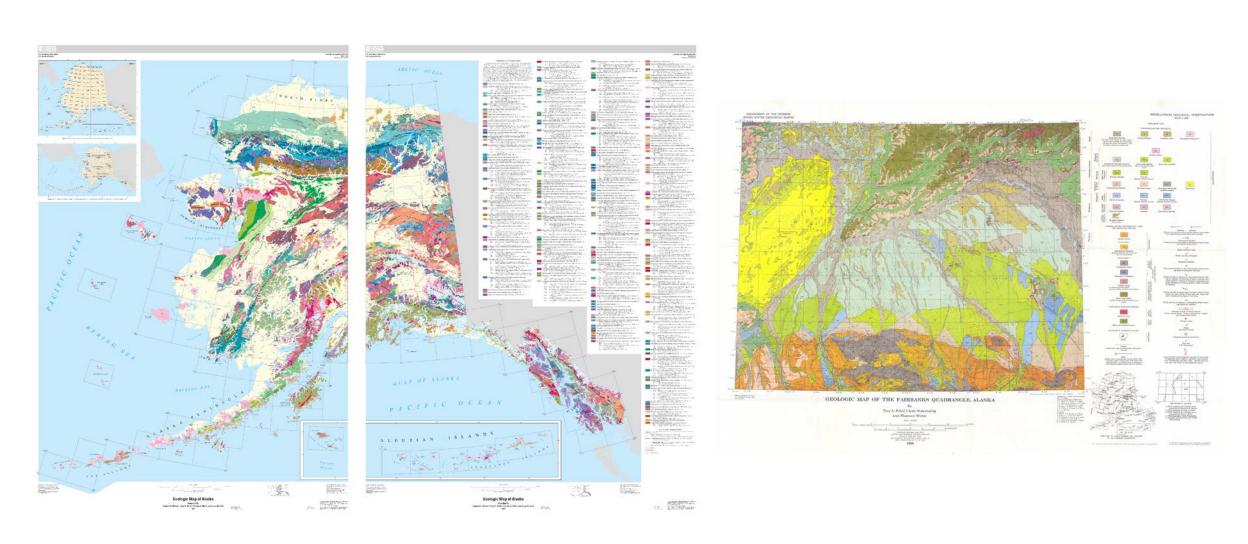
NEHRP site categories

- Define in terms of Vs30
- Can have significant amplification
- Use proxies (topographic slope, geology)


NEHRP Site Category	Description	Vs30 Range, m/s		
А	Hard rock	Vs30 > 1500		
В	Soft rock	760 < Vs30 ≤ 1500		
С	Very dense soil	360 < Vs30 ≤ 760		
D	Stiff soil	180 ≤ Vs30 ≤ 360		
E	Soft soil	Vs30 < 180		
F	Soils requiring site-specific evaluations			

Spectral response acceleration at 1.0 s period							
	≤ 0.1	0.2	0.3	0.4	0.5	≥ 0.6	
Α	0.8	0.8	0.8	0.8	8.0	8.0	
В	0.8	0.8	0.8	0.8	8.0	8.0	
С	1.5	1.5	1.5	1.5	1.5	1.4	
D	2.4	2.2	2.0	1.9	1.8	1.7	
Е	4.2	3.3	2.8	2.4	2.2	2.0	

Stewart and Seyhan 2013


U.S. Vs30 locations

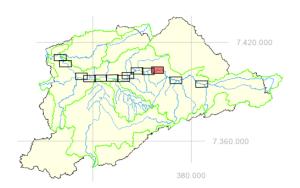
Geological map scales

Mixing scales

Site category map of Alaska

Using geological maps

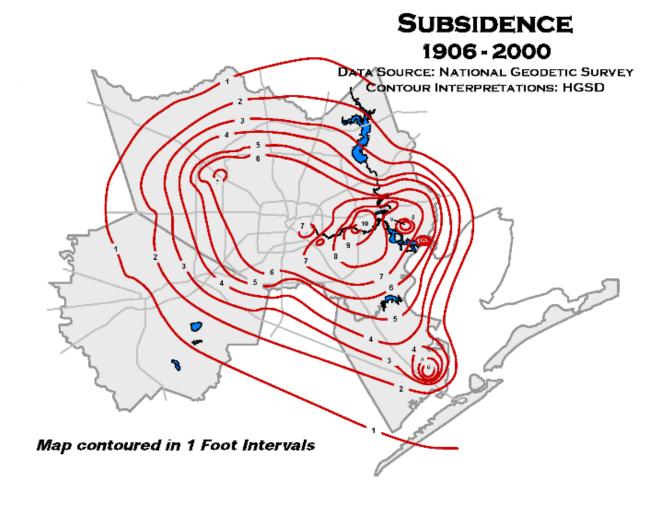
Using topographic data


- Soil properties for infiltration
- Land use for friction

Global flood map

Using topographic data

- Merged datasets
- Change in topography data results in straight flood boundary
 - Higher quality elevations used for urban area



Small flood extent maps

Using geodetic data

- Topography changes
- Subsidence is widespread issue

Data issues

- Uneven distribution
- Merging different resolutions
- Merging different data types
- Fragmentation

Questions

- How and when is that information used to inform decisions, and what kind of decisions (e.g., related to risk for underwriting and evaluating exposure)?
 - Geo-input used to create hazard and risk maps
 - Maps affect pricing and coverage offered to prospects and to clients at sign-up and annual renewals
 - Maps affect aggregate and capacity considerations internally and during reviews by regulatory agencies
- Have you seen changes in the way this input has been requested and used over time?
 - If loss history, Underwriting or Engineering request input (flood)
 - Often geopros drive changes (earthquake)
 - Rate of change

Questions

- How is geo-input used to inform monitoring, inspections, maintenance, or contractual changes of conditions?
 - Risk zone determines recommendations and contract terms and conditions
 - Risk zone determines information gathered during inspections of client locations
 - Risk zone determines advice given to clients client response determines retention
- What are the most effective ways geoprofessionals can provide input to nongeoprofessional decision makers?
 - Keep it simple maps are a good example
 - Keep it digital
 - Have bright-line divisions
 - Non-geopros have other things to worry about

Summary

- We use basic geologic and geotechnical data, e.g., geology, topography
- Incorporate that data into maps for ease of communication and use

Thank you