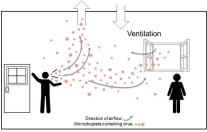
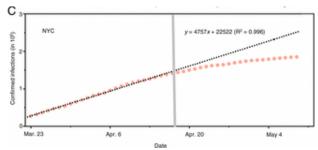
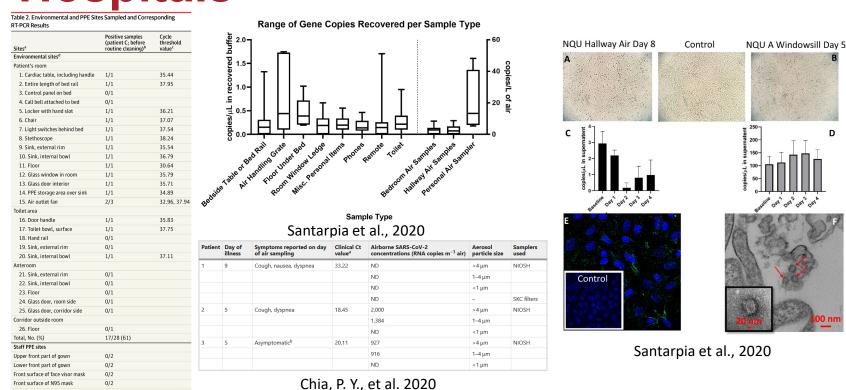

Size and culturability of human-generated SARS-CoV-2 aerosol


Joshua L. Santarpia
University of Nebraska Medical Center


Is SARS-CoV-2 Airborne?

- The question of airborne transmission of SARS-CoV-2 is complex
- This talk will examine the portion of that question related to human production of infectious, viral aerosol
- COVID-19 is a respiratory disease, so we know that virus is produced in the respiratory tract (e.g. Zou, L., et al. 2020)
- We also know that aerosol produced in the lung and larynx are small (less than 1 µm to a few µm) and are produced by breathing and talking, as well as coughing (Morawska, et al. 2009; Johnson, et al. 2011; Somsen, et al. 2020)
- We also know that asymptomatic and presymptomatic people can transmit the virus (Gao, et al., 2020; He, et al., 2020; Oran, et al., 2020; Wei, et al., 2020; Furukawa, et al., 2020; Zou, et al., 2020)
- Several transmission events have suggested the potential for the involvement of aerosols in transmission
 - Washington Choir Practice (Hamner, et al., 2020)
 - Guangzhou Restaurant (Lu, et al., 2020)
- The impact of mask wear (Zhang et al., 2020) and the synthesis of mounting data (e.g. Borak, 2020; Morawska and Milton, 2020) have led to a growing consensus of the importance of airborne transmission in the COVID-19 pandemic

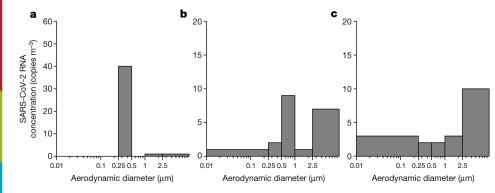

Morawska and Milton, 2020

Zhang et al., 2020

Early Studies of SARS-CoV-2 in **Hospitals**

Ong, S. W. X., et al. 2020

Front surface of N95 mask

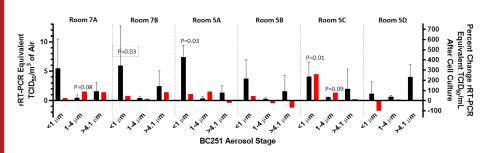

- Several studies of air and surface contamination in rooms housing COVID-19 patients indicated widespread contamination
- In addition air samples or samples around ventilation indicated the potential role of fine aerosols in the observations
- Convincing data around the culturability of these aerosols was elusive

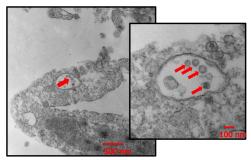
The Size of Human-Generated SARS-CoV-2 aerosol

Patient	Day of illness	Symptoms reported on day of air sampling	Clinical Ct value ^a	Airborne SARS-CoV-2 concentrations (RNA copies m ⁻³ air)	Aerosol particle size	Samplers used
1	9	Cough, nausea, dyspnea	33.22	ND	>4 µm	NIOSH
				ND	1–4 μm	
				ND	<1 μm	
				ND	-	SKC filters
2	5	Cough, dyspnea	18.45	2,000	>4 µm	NIOSH
				1,384	1–4 μm	
				ND	<1 μm	
3	5	Asymptomatic ^b	20.11	927	>4 µm	NIOSH
				916	1–4 μm	
				ND	<1 μm	

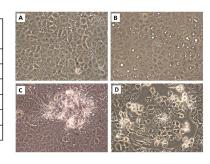
Chia, et al. 2020

Liu, et al., 2020


SARS-CoV-2 Detected in Aerosol by PCR and Cell Culture							
	rRT-PCR	Cell Culture					
>4.1 μm	6:6 (100%)	0:6 (0%)					
1-4 μm	6:6 (100%)	2:6 (33%)*					
< 1 μm	6:6 (100%)	3:6 (50%)					


Santarpia, et al., 2020

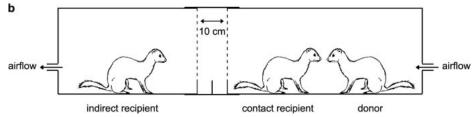
- Three studies have attempted to directly address the size of human-generated SARS-CoV-2 aerosol
- All three studies found evidence of SARS-CoV-2 in particles less that 5 µm
- 2 of the 3 studies found evidence for particles less than 1 µm

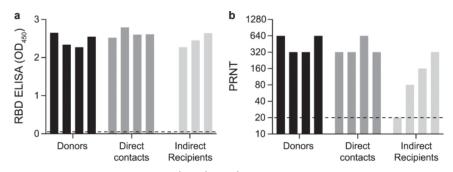

Aerosol Samples Replicating in Cell Culture

Santarpia et al., 2020

Sample ID	Virus genome equivalents/L of air ^a	TCID ₅₀ /100 μl	Viable virus count/L air	
1-1 BioSpot	94	2.68E+04	74	
1-2 BioSpot + HEPA	-	0	0	
1-3 BioSpot	30	6.31E+03	18	
2-1 VIVAS	44	1.00E+04	27	
2-2 VIVA S+ HEPA	-	0	0	
2-3 VIVAS	16	2.15E+03	6	

^aFrom Table 2.


Lednicky et al., 2020


- Two pre-print studies indicate that aerosol particles generated by patients can replicate in cell culture
- Santarpia, et al found evidence of replication (through serial PCR and EM) of replication of collected sub-micron particles
- Lednicky, et al quantified culturable viral aerosol collected at 2 and 4.8 m from patients

Animal Studies

Richard et al., 2020

- Two studies in ferrets have indicated that indirect transmission of SARS-CoV-2 by the air is possible
- Separation distance was relatively small, so its difficult to complete rule out the role of larger particles

So, what do we know?

- •The rooms of people infected with COVID-19 show widespread contamination of both surfaces and air, with indications that aerosols may be involved (sample distance, ventilation, etc.)
- •Asymptomatic and presymptomatic people are known to spread the virus, indicating the smaller aerosols produced only during breathing and speaking may carry the virus
- •Aerosols less than 4 microns (even less than 1 micron) have been shown to contain viral RNA
- •Aerosols from patient rooms have been cultured in Vero cells, and submicron samples from patient rooms have demonstrated replication in cell culture
- •Ferrets have been shown to transmit the SARS-CoV-2 virus through the air

Humans infected with SARS-CoV-2 can produce infectious fine mode particles that may be able to transmit the disease after exposure to enough particles.

Additional Questions

- •At what rate do people produce infectious aerosol?
- •How does the production of infectious aerosol vary from person to person?
- •How does the production of infectious aerosol change over the course of illness?
- •What is the infectious dose of SARS-CoV-2 through the aerosol route?

References

Asymptomatic and Presymptomatic Transmisssion

Gao, M., et al. 2020. "A study on infectivity of asymptomatic SARS-CoV-2 carriers." Respir Med169: 106026. https://doi.org/10.1016/j.rmed.2020.106026.

He, Xi, et al. 2020. "Temporal dynamics in viral shedding and transmissibility of COVID-19." Nature Medicine26 (5): 672-675. https://doi.org/10.1038/s41591-020-0869-5.

Oran, D. P., and E. J. Topol. 2020. "Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review." Ann Intern Med. https://doi.org/10.7326/M20-3012.

Wei, W. E., et al. 2020. "Presymptomatic Transmission of SARS-CoV-2 -Singapore, January 23-March 16, 2020." MMWR Morb Mortal Wkly Rep69 (14): 411-415. https://doi.org/10.15585/mmwr.mm6914e1

Furukawa, Nathan, et al. 2020. "Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 While Presymptomatic or Asymptomatic." Emerging Infectious Disease journal26 (7). https://doi.org/10.3201/eid2607.201595.

Zou, L., et al. 2020. "SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients." N Engl J Med382 (12): 1177-1179. https://doi.org/10.1056/NEJMc2001737.

Case Studies

Hamner, L., et al. 2020. "High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice -Skagit County, Washington, March 2020." MMWR Morb Mortal Wkly Rep69 (19): 606-610. https://doi.org/10.15585/mmwr.mm6919e6.

Lu, J., Gu, J., Li, K., Xu, C., Su, W., Lai, Z....Yang, Z. (2020). COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerging Infectious Diseases, 26(7), 1628-1631. https://dx.doi.org/10.3201/eid2607.200764.

Human Expired Droplets

Johnson, G. R., et al. 2011. "Modality of human expired aerosol size distributions." Journal of Aerosol Science42 (12): 839-851. https://doi.org/https://doi.org/10.1016/j.jaerosci.2011.07.009.

Morawska, L., et al. 2009. "Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities." Journal of Aerosol Science40 (3): 256-269. https://doi.org/https://doi.org/10.1016/j.jaerosci.2008.11.002.

Somsen, G. A., et al. 2020. "Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission." Lancet Respir Med8 (7): 658-659. https://doi.org/10.1016/s2213-2600(20)30245-9.

References, cont.

The Case for Airborne Transmission

Morawska, L., and D. K. Milton, 2020. "It is Time to Address Airborne Transmission of COVID-19." Clin Infect Dis. https://doi.org/10.1093/cid/ciaa939.

Borak, J. 2020. "Airborne Transmission of COVID-19." Occup Med (Lond)70 (5): 297-299. https://doi.org/10.1093/occmed/kgaa080

Zhang, R., et al. 2020. "Identifying airborne transmission as the dominant route for the spread of COVID-19." Proc Natl Acad Sci U S A117 (26): 14857-14863. https://doi.org/10.1073/pnas.2009637117.

Contamination in Hospital Rooms

Ong, S. W. X., et al. 2020. "Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a Symptomatic Patient." JAMA -Journal of the American Medical Association 323 (16): 1610-1612. https://doi.org/10.1001/jama.2020.3227.

Chia, P. Y., et al. 2020. "Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients." Nat Commun11 (1): 2800. https://doi.org/10.1038/s41467-020-16670-2.

Guo, Z. D., et al. 2020. "Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020." Emerg Infect Dis26 (7): 1583-1591. https://doi.org/10.3201/eid2607.200885.

Nissen, Karolina, et al. 2020. "Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards." https://doi.org/10.21203/rs.3.rs-34643/v1.

Santarpia, J.L., Rivera, D.N., Herrera, V.L. *et al.* Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. *Sci Rep* **10**, 12732 (2020). https://doi.org/10.1038/s41598-020-69286-3

Liu, Y., Ning, Z., Chen, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature **582**, 557–560 (2020). https://doi.org/10.1038/s41586-020-2271-3

Culturability and Size

Lednicky, et al. 2020. "Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients" medRxiv 2020.08.03.20167395; doi: https://doi.org/10.1101/2020.08.03.20167395

Santarpia, J.L. et al., 2020 "The Infectious Nature of Patient-Generated SARS-CoV-2 Aerosol" medRxiv 2020.07.13.20041632; doi: https://doi.org/10.1101/2020.07.13.20041632

Animal Studies

Richard, M., et al. 2020. "SARS-CoV-2 is transmitted via contact and via the air between ferrets." Nat Commun11 (1): 3496. https://doi.org/10.1038/s41467-020-17367-2

Kim, Y. I., et al. 2020. "Infection and Rapid Transmission of SARS-CoV-2 in Ferrets." Cell Host Microbe27 (5): 704-709.e2. https://doi.org/10.1016/j.chom.2020.03.023.

Contributing Collaborators

Santarpia Lab/NSRI

Danielle Rivera Vicki Herrera Kevin Crown Daniel Ackerman

Reid Lab

St. Patrick Reid Jane Morwitzer

UNMC Collaborators

John Lowe
James Lawler
Jana Broadhurst
Hanna Creager
George Santarpia
Conoan Nicholas

UNO

Paul Denton
Jacob Martens

External Collaborators

Shanna Ratnesar-Shumate Ying Fang Michael Callahan

Medical/Clinical Collaborators

David Brett-Major Elizabeth Schnaubelt Nicholas Markin Steven Lisco

