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Committee Statement of Task 

1.) Evaluate US contributions to global ocean plastic waste, 

including types, sources and geographic variations

2.) Assess the prevalence of marine debris and mismanaged 

plastic waste in saltwater and freshwater United States 

waterways 

3.) Examine the import and export of plastic waste to and from 

the United States, including the destinations of the exported 

plastic and the waste management infrastructure and 

environmental conditions of these locations. 



Committee Statement of Task 

4.) Assess the potential value of a national marine debris tracking 

and monitoring system and how such a system might be designed 

and implemented. 

5.) Develop recommendations on knowledge gaps that warrant 

further scientific inquiry. 

6.) Recommend potential means to reduce United States 

contributions to global ocean plastic waste. 



Microplastics in the 
Mississippi River

Katherine M. Martin, Jessica Myers Elizabeth A. Hasenmuller, 
John R. White, Lisa G. Chambers and Jeremy L. Conkle



Urban Water cycle



• No greater receiving body in the U.S. than the Mississippi River! 

• Covers over 40% of the U.S. and parts of Canada 

• >90 million people  

• >50 cities rely on the Mississippi for daily water supply 

• >7,500 permitted wastewater discharges

Image Courtesy of NOAA, Anthony Reisinger

What’s the problem?



Research Objectives

• Quantify and characterize µP in the 
Mississippi River 

• Determine µP contributions from major 
tributaries 

• Illinois, Missouri and Ohio River 

• Surface & depth samples 

• Estimate µP discharge to the Gulf of 
Mexico
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Mississippi River Methods

Martin, K. M., E. A. Hasenmueller, J. R. White, L. G. Chambers, and J. L. Conkle. 2018. Sampling, Sorting, and Characterizing Microplastics 
in Aquatic Environments with High Suspended Sediment Loads and Large Floating Debris. Jove-Journal of Visualized Experiments.



µ-FTIR Analysis
• Conservative approach: Recording/saving as much information as 

possible 

• 116 ± 75 “suspected” µP per sample 

• 10% = ~1,460  suspected µP for analysis 

• 10 - 30 min per suspected µP (minimum of 250 hrs to analyze 1,400) 

• QA/QC - how do you know the material you matched is the actual 
material? 

• Especially true for cellulose based materials



0.45 µm 50 µm

100 µm 500 µm



Most of the Following Results 
are Preliminary



•Cellulose Origin  
•Cotton 
•Rayon 
•Linen 
•Cellophane 
•etc…

•Polyethylene  
•Polyester 
•Polyethylene Terephthalate 
•Polystyrene  
•Acrylic 
•Nylon 
•etc…

•Calcium Stearate 
•Paint 
•Hydrangea Root Powder 
•Butternut Bark Powder 
•Chitosan 
•Coriander Seed Powder 
•etc…

Fully Synthetic 
10%

Semi-synthetic 
65%

Other 
25%

FTIR Confirmed Materials

µ-FTIR IdentificationParticles
3%

Fibers
97%



Fully Synthetic Semi-Synthetic Total
Fibers L-1

All Samples 6.3 ± 7.7 28.4 ± 36.5 34.0 ± 38.4
Summer 2017 (High River Stage) 3.5 ± 4.3 24.3 ± 28.5 26.5 ± 29.7

Fall 2017 (Low River Stage) 8.8 ± 9.1 31.7 ± 42.3 40.5 ± 44.2

All Surface Samples  7.9 ± 9.8 34.7 ± 45.1 42.6 ± 48.1
All Depth Samples 4.8 ± 4.8 22.1 ± 25.0 25.8 ± 24.8

Material Categories - Blank Corrected



Materials Found
• Fully Synthetic 

• 70% Polyester or Polyethylene Terephthalate (density: 1.38 g cm-3) 

• Semi-synthetic 

• 76% Cellulosic materials 

• 46% Cotton (density: 1.54 g cm-3) 

• 16% Rayon (density: 1.5, 3.0 and 4.5 g cm-3) 

• 14% Other cellulosic



• Rough Estimates of Annual discharge to the Gulf of Mexico 

• ~0.8 - 2.6 quadrillion fully synthetic µPs (3.5 - 11.5 Tonnes) 

• ~7.7 - 22.9 quadrillion semi-synthetic fibers (34.7 - 103.0 Tonnes) 

• ~8.5 - 25 quadrillion total (38.3 - 114.5 Tonnes)

Gulf of Mexico Loading Estimates

Date
River Discharge Fully Synthetic Semi-Synthetic Total Fully Synthetic Semi-Synthetic Total

L day-1 Fibers day-1 Kg day-1

07/06/17 1,396,824,777,216 7,247,817,677,739 62,778,272,854,075 70,026,090,531,814 31.7 282.2 313.8
10/19/17 463,513,757,184 2,194,276,937,088 21,189,081,541,321 23,383,358,478,409 9.6 95.2 104.8

Fibers yr-1 Tonnes yr-1

07/06/17 2,645,453,452,374,740 22,914,069,591,737,400 25,559,523,044,112,100 11.6 103.0 114.5
10/19/17 800,911,082,037,120 7,734,014,762,582,170 8,534,925,844,619,290 3.5 34.7 38.3



What is Next…
• Currently working on QA/QC of µFTIR results 

• Need to conduct blank corrections by individual material types 

• Then we will:  

• Compare high to low river stages 

• Compare surface to depth 

• Examine spatial trends and land-use where possible 

• Currently conducting a similar study in Texas



Take Home Message… so far

• There is a lot of very tiny material (fully and semi-synthetic) in the 
massive Mississippi River… 

• What does that mean???
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What are the 
• Sources
• Fate 
• Biological interactions 

of anthropogenic litter (AL) in freshwaters?







Goal: Highlight research results, conclusions.

AL and microplastic on Great Lakes beaches and streams

1.  Spatial distribution

Small scale: Habitat

Large scale: Watershed

2. Temporal variation

Short term: 1 year

Longer term: Decades

3. Conceptual model update
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Patchy distribution of AL on Great Lakes beaches 

Vincent and Hoellein (2017) 



Patchy distribution of AL on Great Lakes beaches 

Lazcano et al. (2020) 



Population related to AL density on beaches 

Hoellein et al. (2015) 



Patchy distribution of AL in streams – Habitat

Before Collection After Collection



Patchy distribution of AL in streams – Habitat
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Land-use related to distribution of AL in streams

Streams
Wisbrock et al. (unpublished) 



Patchy distribution of microplastics in streams: WWTP

McCormick et al. 2016 Ecosphere



Patchy distribution of microplastics in stream substrates

Fine benthic organic matter retains lots of 

MP over small area (Hotspot)

Cobble retains little MP over large area 
(Not a hotspot)

High plastic, 

low spatial 

coverage

Low plastic, 

high spatial 

coverage     

Vincent and Hoellein (in review) 

Hotspot index



Land Use Type

Open Water    

Developed Low
Developed High
Forest
Agriculture                 
Wetland

Patchy distribution of microplastics at watershed scale

McNeish et al. (unpublished) 



Plastic litter: Patchy distribution in the environment

Small spatial scale
• Habitat 

• Next to piers

• Debris dams

• Point sources (WWTP)

• Different stream substrates 
(fine particles, cobble)

1) Spatial distribution of AL is 
uneven

2) Litter and microplastics 
follows pattern for natural 
materials (leaves, sediment)

Large spatial scale
• Land use patterns
• Population 

1) Watershed attributes land use 
offers some explanatory power

2) Much variation still unexplained, 
temporal dynamics also critical.



Goal: Highlight research results, conclusions.

AL and microplastic on Great Lakes beaches and streams

1.  Spatial distribution

Small scale: Habitat

Large scale: Watershed

2. Temporal variation

Short term: 1 year

Longer term: Decades

3. Conceptual model update



Goal: Highlight research results, conclusions.

AL and microplastic on Great Lakes beaches and streams

1.  Spatial distribution

Small scale: Habitat

Large scale: Watershed

2. Temporal variation

Short term: 1 year

Longer term: Decades

3. Conceptual model update



Permanent transects
Clear and collect new AL input every 2 weeks

for 1 year (ice and snow free)

1 year: 79,915 items arrived on transects
Total area = 11,366 m2

Vincent and Hoellein (2017) 

AL is moving around on beaches



AL is moving around in streams

McCormick and Hoellein 2016

407 retained
954 gross input 43% retention in 1 yr.In our 40 m2 study area



Microplastic is retained AND exported from streams

Acrylic fibers (1-2 mm)

Hoellein et al 2019



Some AL is decreasing 
over long time scales
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Microplastic is increasing over long time scales

Hou et al. In press 19
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Microplastic is increasing over long time scales

Hou et al. In press 
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Plastic litter: Variation in time

Short time scale

1) Dynamic: AL and 
microplastic are mobile

2) Both retained and 
moving

3) Patterns similar to 
natural particles  

Long time scale

1) Change in litter reflect broad 
policy and behavior shifts 
(smoking litter)

2) Microplastic in freshwater fish 
increasing – follows expected 
global trends
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Final take home points

1) Plastic litter: Spatial and temporal variation

• Patchy distribution across spatial scales

• Variable in time: Sources, retention, 
transformation, movement

2) Freshwaters are dynamic ecosystems

• Biologically and chemically reactive

• Provide key ecosystem services

• Critical sites for intervention, clean-up, 
prevention

• Not pipes! 

Plastic litter research needs freshwater science

• Freshwater ecosystems are less well studied for 
than oceans

• Hydrology, biology, chemistry, engineering, 
social science

• Attempts to craft global (or USA-based) 
assessments of plastic litter must include 
measurements of plastic litter dynamics within 
watersheds

• If focusing only on exports to coastlines, the 
assessment is incomplete. 
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Goal: Highlight research results, conclusions.

AL and microplastic on Great Lakes beaches and streams

1.  Spatial distribution

Small scale: Habitat

Large scale: Watershed

2. Temporal variation

Short term: 1 year

Longer term: Decades

3. Conceptual model update
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Recording will be available on our website in a few weeks. 



The paper referred to by Dr. Timothy Hoellein in his presentation about the model is available here, with 
open access.  https://esajournals.onlinelibrary.wiley.com/doi/10.1002/fee.2294 
 

https://esajournals.onlinelibrary.wiley.com/doi/10.1002/fee.2294
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