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The Technology Path to Deep
Greenhouse Gas Emissions Cuts by
2050: The Pivotal Role of Electricity
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Jack Moore," William R. Morrow 111,* Snuller Price,* Margaret 5. Torn*

Several states and countries have adopted targets for deep reductions in greenhouse gas emissions
by 2050, but there has been little physically realistic modeling of the energy and economic
transformations required. We analyzed the infrastructure and technology path required to meet
California’s goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure
stocks, resource constraints, and electricity system operability. We found that technically feasible
levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread
electrification of transportation and other sectors is required. Decarbonized electricity would become
the dominant form of energy supply, posing challenges and opportunities for economic growth and
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Three Pillars of Deep Decarbonization
Required in All Cases

Energy Decarbonization End Use Fuel
Efficiency of Electricity Switching to

Electric Sources
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Current Energy System

2014 Reference Case

Geothermal —

Solar =—

Wind —

Nuclear =

Hydro
Biomass [==

Natural Gas

Coal @

Electricity
Generation
Grid Electricity
Y o | -
4 SAEE
Buildings
Power-to-Gas SNG
Hydrogen Production T
Biofuel Production ydrogen - Pipeline Gas
B e
Industry
Combined Heat and Power

Petroleum

il =

b I
Petroleum Liquid Fuels Transportation

Refining
) Y—

300EJ 50EJ 10EJ

Source: Williams et al. Deeﬁ Decarbonization in the United States (2015)




Low Carbon Energy System

Figure 15 High Renewables Sankey Diagram, 2050
2050 High Renewables Case
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Sectoral Metrics: 2050 Benchmarks for US

Current Energy Deep Decarbonized | Key Metrics in 2050
System Energy System

Electricity Coal and natural Renewable, nuclear, | Double output while
gas dominated or CCS reducing CO,/kWh
30x
Transportation Oil dominated Electricity, Fuel economy >100
hydrogen, CNG, mpg equivalent
LNG, biodiesel
Buildings Natural gas and Electrification, end Building energy use
oil dominate use efficiency >90% electrified
heating
Industry Fossil fuel Electrification, CCS, Double efficiency,
dominated efficiency, low C >40% electrification
fuels

Source: Williams et al. Deep Decarbonization in the United States (2015)



		Sector

		Current Energy System

		Deep Decarbonized Energy System

		Key Metrics in 2050



		Electricity

		Coal and natural gas dominated

		Renewable, nuclear, or CCS

		Double output while reducing CO2/kWh 30x



		Transportation

		Oil dominated

		Electricity, hydrogen, CNG, LNG, biodiesel

		Fuel economy >100 mpg equivalent



		Buildings

		Natural gas and oil dominate heating

		Electrification, end use efficiency

		Building energy use  >90% electrified



		Industry

		Fossil fuel dominated

		Electrification, CCS, efficiency, low C fuels

		Double efficiency, >40% electrification








Energy infrastructure typically has long lifetimes
Decarbonization strategy must account for this

A car purchased today is likely to replaced at most 2 times before 2050.
A residential building constructed today is likely to still be standing in 2050.
2015 > 2030 > 2050

Electric lighting 4 replacements

Hot water heater 3 replacements

Space heater 2 replacements

Light duty vehicle 2 replacements

Heavy duty vehicle 1 replacements

Industrial boiler 1 replacements

Electricity power plant 1 replacements

Residential building 0 replacements
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Systemic Nature of Low Carbon Transition
Light Duty Vehicle Example
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Figure 58. Residential Space Heat Low Carbon Transition in Mixed Case
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Deeper reduction targets require a 4t pillar:
Carbon capture, utilization, sequestration

Electricity Decarbonization Energy Efficiency Electrification Carbon Capture
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Source: Haley, et al. 350 ppm Pathways for the United States. (2019)




Energy Economy in Low Carbon Transition:
Capital Costs Replace Fuel Costs

Ner energy syste Net energy system cost of 80 x 50 case ~1% GDP (+/- 1%)

. (does not include economic benefits of avoided pollution or climate damage)
$1,2008 e
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Summary: The Low Carbon Transition

Net zero carbon by mid-century is technically
feasible

Decarbonization is built on 3 pillars: energy
efficiency, electrification, carbon-free electricity

4th pillar for deeper decarbonization: carbon
capture, sequestration, by technology or land sink

Fuel costs replaced by fixed costs in low carbon
energy economy

Large change in where money flows to, relatively
small change in net flow (~1-2% of GDP)
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A few institutional challenges...

Cross-sector coordination in planning and
investment, e.g. electricity and transportation

Certainty for investors

Consumer adoption of low carbon
technologies, e.g. heat pumps & ZEVs

Adapting to energy system primarily powered
by renewables & dominated by fixed costs

New electricity markets, planning processes
Retirement of natural gas distribution system
Addressing land use, NETS requirements



How to coordinate across sectors when the
Institutions don’t currently exist?

ﬁElectric vs. Fuel Cell Vehicles \

Electric vehicles Electric
B charging
Zero infrastructure
@ Emissions
Vehicles H2 fuel
] D production:
Fuel cell vehicles .

grid electrolysiy
\

.

ﬁ. Electrification vs. Low Carbon Gas in Buildings

Biogas and low- No building
carbon synthetic ﬂ electrification,
methane biogas in pipeline

G Building

strategy
Electric heat Building
pumps, electrification,
k electrification NO gas plpelme

Source: Williams et al. Deep Decarbonization in the United States (2015)
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How to drive investment flows into
low carbon equipment and infrastructure?

Cumulative Net Investment:
$2012

DDPP CCS Case DDPP High Renewables Case DDPP Mixed Case DDPP Nuclear Case

$T35
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$T15 Cumulative Net Investment
(All Categories)
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Renewable Power Plants [ Biofuel Production High Efficiency Gas/Diesel ICE Vehicles [} Conventional Gas/Diesel ICE Vehicles
Nuclear Power Plants FCVs [ ] Other Electrified End-Use Equipment Conventional End-Use Equipment
CCS Power Plants [} EVs and PHEVs Heat Pumps ] Conventional Thermal Power Plants
Electric Fuel (H2 and CH4) Production Pipeline Gas Heavy Duty Vehicles ] Energy Efficient End-Use Equipment

Source: Williams et al. Deep Decarbonization in the United States (2015)
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How to drive rapid consumer adoption?

Light-Duty Vehicle Adoption:

vehicles

15M
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Source: Williams et al. Deep Decarbonization in the United States (2015)
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What changes are required for electricity
balancing in high renewables system?

WECC Electricity Generation 3/2/2050 - 3/8/2050:
MWh
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Energy Transition
(High Renewables Case)
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Figure 30. 2050 Installed Electric Generating Capacity

4,000
3,500 o
3,000
2,500 N
3 2,000
1,500
1,000 - .
500 -
0 -
Reference Mixed High Renewables High Nuclear High CCS
m Conventional Gas m Oil ™ Nuclear
Gas with CCS W Coal with CCS m Conventional Hydro
Small Hydro Solar Thermal Solar PV
M Onshore Wind Offshore Wind M Biomass
20

Source: Williams et al. Deep Decarbonization in the United States (2015)



Figure 5 Low-Carbon Technology Investment by Technology Type, Year, and Case

Annual Decarbonization Technology Investment:
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Energy Economy in Low Carbon Transition
Capital Costs Replace Fuel Costs

uuy
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Source: Haley, et al. 350 ppm Pathways for the United States. (2019)



Net Energy System Cost of Carbon Neutral Pathways
Compared to Historical Energy Spending in U.S.
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Seasonal overgeneration Seasonal undergeneration

solution: electric fuel solution: natural gas generation
production & other flexible at very low capacity factors for
loads reliabilit
\ Y g
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figure 7. An example of the magnitude of flexible demand that operates in a high-renewables system taken from the U.S.
DDPP high-renewables scenario.

Jones et al, IEEE Power and Energy, 2018



Variable Cost Share
of Revenue Requirement

20%

—_
@)
>

10%

0]
.O\o

0%

-\’\ US$1 1PB

US$85B

‘\\\

Scenario

B AEO 2017 Reference
B ngh Renewables US$3 B

2020 2025 2030 2035 2040 2045 2050

Year
Jones et al, IEEE Power and Energy, 2018




AEQO 2017

Reference
E /
©
o ’;"“ 600-
5 8
S Z 400-
— @©
T o
= & 200-
-
I_

0 1
2015 2050

High Renewables

-40

— N LW
o o o

Capacity Factor (%)

()

2015 2050

B Capacity Factor

Thermal Power Plant Capacity

Jones et al, IEEE Power and Energy, 2018




Some questions for future wholesale
electricity markets

How will conventional thermal power plants
needed for reliability get paid?

How will revenue requirements dominated by
fixed costs be allocated among consumers?

How will large flexible loads be induced to
participate?

How will future electricity system planning be
conducted?



Summary: What carbon neutrality
means for the electricity industry

Fully decarbonized electricity
2-3x generation to serve new electric loads
New approach to supply-demand balancing

Much greater integration with demand side in
operations, planning, procurement

Very different wholesale electricity markets

Increasing interactions with land use



croaat(canson  The IPCC Special Report on “Global Warming of 1.5°C”

PROJECT

The IPCC Special Report on “Global Warming of 1.5°C” presented new scenarios:
1.5°C scenarios require halving emissions by ~2030, net-zero by ~2050, and negative thereafter

Global CO. Emissions

0%
120 Gt 7] ?,g: (median)
C02 75%
1.5°C pathways reach — 100%
“carbon neutrality” globally

80 1 ~ 2050 =

Baseline (n=56)

40 1

Above 2°C (n=133)
Lower 2°C (n=74)
Higher 2°C (n=58)

: 1.5°C low overshoot (n=44)

1.5°C high bvershbot (n=37)

net-negative global emissions

40 - ‘
2000 2020

T
@® Global Carbon Project ® Data: IAMC 1.5°C Scenario Explorer (hosted by I11ASA)

2040 2060 2080

Net emissions include those from land-use change and bioenergy with CCS.
Source: Huppmann et al 2018; IAMC 1.5C Scenario Database; IPCC SR15; Global Carbon Budget 2018
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Land use implications of carbon

neutrality for energy system
The deeper the emissions target, the more land
use is involved

Sink: energy system emissions target depends
in part on how big the land sink is

Siting: large wind and solar build out requires
significant land area

Biomass: competes with other land uses, e.g.
food, biodiversity

All occurring under pressure of increasing
population, climate change, other threats
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