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Perturbation of the global carbon cycle caused by anthropogenic activities,
averaged globally for the decade 2008-2017 (GtCO,/yr)
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The budget imbalance is the difference between the estimated emissions and sinks.
Source: CDIAC; NOAA-ESRL; Le Quéré et al 2018; Ciais et al. 2013; Global Carbon Budget 2018
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Land-use change was the dominant source of annual CO, emissions until around 1950.
Fossil CO, emissions now dominate global changes.

Annual Global Emissions
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Others: Emissions from cement production and gas flaring
Source: CDIAC; Houghton and Nassikas 2017: Hansis et al 2015; Le Quéré et al 2018: Global Carbon Budget 2018
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Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean
The “imbalance” between total emissions and total sinks reflects the gap in our understanding
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Source: CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Joos et al 2013;
Khatiwala et al. 2013; DeVries 2014: Le Quéré et al 2018; Global Carbon Budget 2018
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Potential reforestation areas

“there is room for an extra 0.9 billion hectares of canopy cover, which could store
205 gigatonnes of carbon in areas that would naturally support woodlands and forests”
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Major Components of the North
American Carbon Cycle.

Atmosphere
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Anthropogenic CH, causes >25% of today’s radiative

forcing

CONTRIBUTIONS OF ALL POLLUTANTS
TO CURRENT WARMING

RELATIVE IMPORTANCE AMONG
SHORT-LIVED CLIMATE POLLUTANTS

24% methane

(including tropospheric ozone)

Short-Lived
Climate
Pollutants

67% methane
(including tropospheric ozone)

11% black carbon

<1% hydrofluorocarbons
10% ozone depleting gases
5% nitrous oxide

31% black carbon

0 -
2% hydrofluorocarbons 50% carbon dioride

Adapted from IPCC AR5,
Table 8.SM.6
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[] Political Boundaries
[] National Climate Assessment Regions
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| think you should be more explicit here in step two



Key issues that need to be
addressed

e Baseline/Counter Factual has an enormous
influence on the benefits you calculate

 Time matters in figuring out the implications

e Spatial Scale — stand, woodshed, region,
globe
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Forest regrowth equal harvest at the end of the first rotation —
how you account for the baseline is critical
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Total ecosystem carbon (Mg C ha'')

Hubbard Brook Experimental Forest
Watershed 5 (22 ha) - Northern Hardwood Forest

Whole Tree Harvest

300
= Aboveground biomass
Stumps + woody debris
Roots (live + dead)
250 m O horizon
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15 years post harvest ecosystem carbon is about the same as preharvest
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Major Components of the North
American Carbon Cycle.

Atmosphere
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Net Carbon Emissions

The challenge of ensuring
Bioenergy is climate beneficial

Environmental/Silvicultural Sustainability

» |ower

higher



Net Carbon emissions

The challenge of ensuring
Bioenergy is climate beneficial

Over what period of time ?

Silvicultural/Environmental Sustainability
IOW — hlgh

» |ower

Put a fence around

10 years?

the forest

30 years?

higher



System level impacts matter in
determining the role that land use/
forests will play in deep decarbonization

Albedo changes

Bioenergy — net stock changes, BECCS assume
bioenergy is largely carbon neutral

Methane - net emissions/uptake

Norms and local economics drive land use

— Fragmentation

— Tradition — Swiss high pastures



Does deep decarbonization = lnet radiative forcing?



Does deep decarbonization = lnet radiative forcing?

It depends greatly —
be very careful in assuming they are equal



Metrics Matter
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Metrics Matter
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GWP,,/GWP 4,

1 Ocko et al. 2017. Unmask temporal trade-offs in climate policy debates. Science 356:6337



Metrics Matter

ok

GWP,,/GWP 4,

1 Ocko et al. 2017. Unmask temporal trade-offs in climate policy debates. Science 356:6337

Pulse versus constant flow of emissions
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