

Intersection of Genomics and Health Economics

David L. Veenstra, PharmD, PhD

Pharmaceutical Outcomes Research and Policy Program
Institute for Public Health Genetics
University of Washington
Seattle, WA

Three Challenges

1. Incentives for test/evidence development
2. Measuring personal utility and policy development
3. Impact on healthcare system – behavior of patients and providers

I. Health Economics Overview

There is a need for a systematic approach to informing complex decisions

- Two very important and very basic concepts:
 - Include all relevant factors
 - Use same approach for all decisions
- ‘Cost effectiveness analysis’ (CEA) is a formal set of approaches to address this need

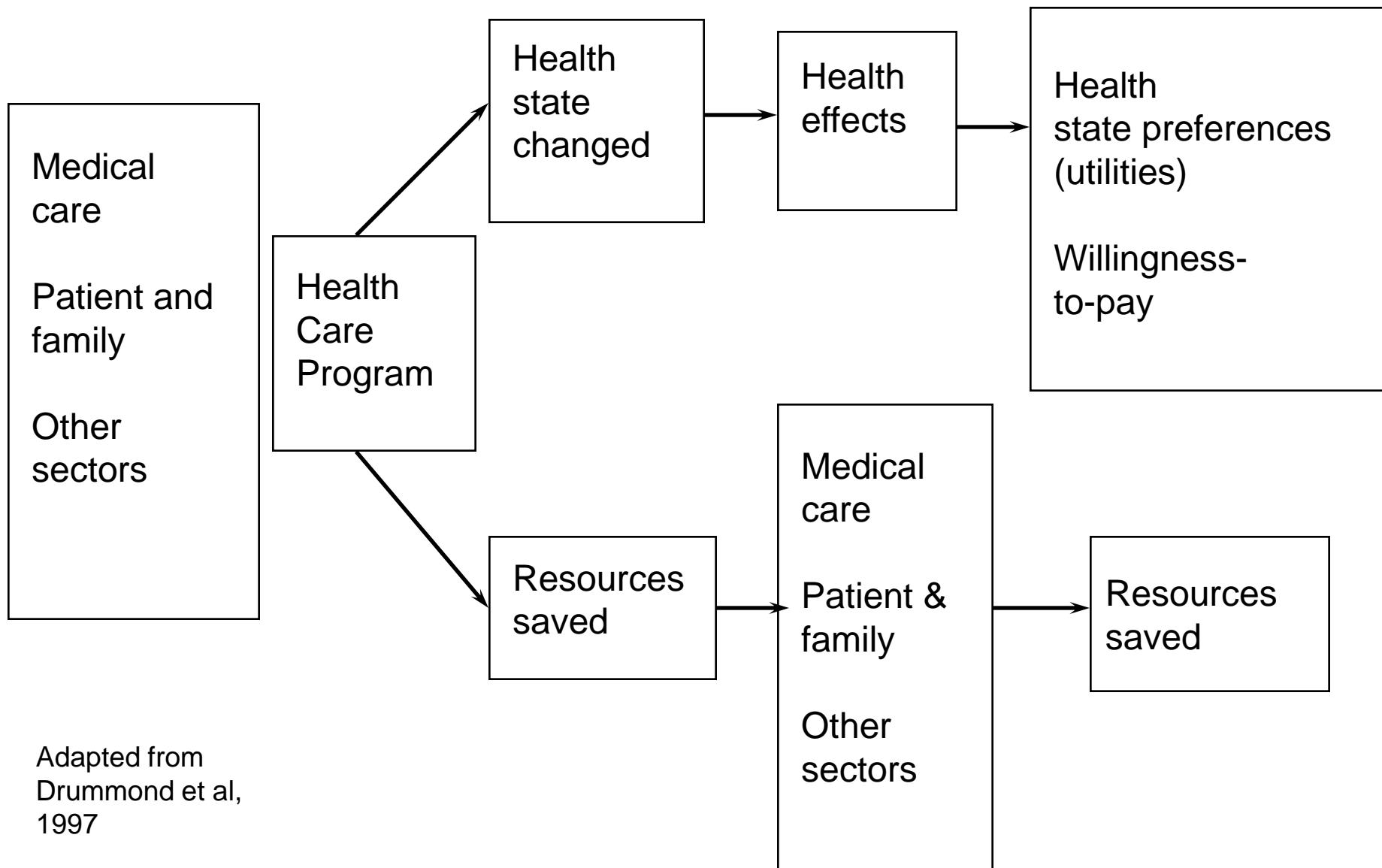
What is CEA?

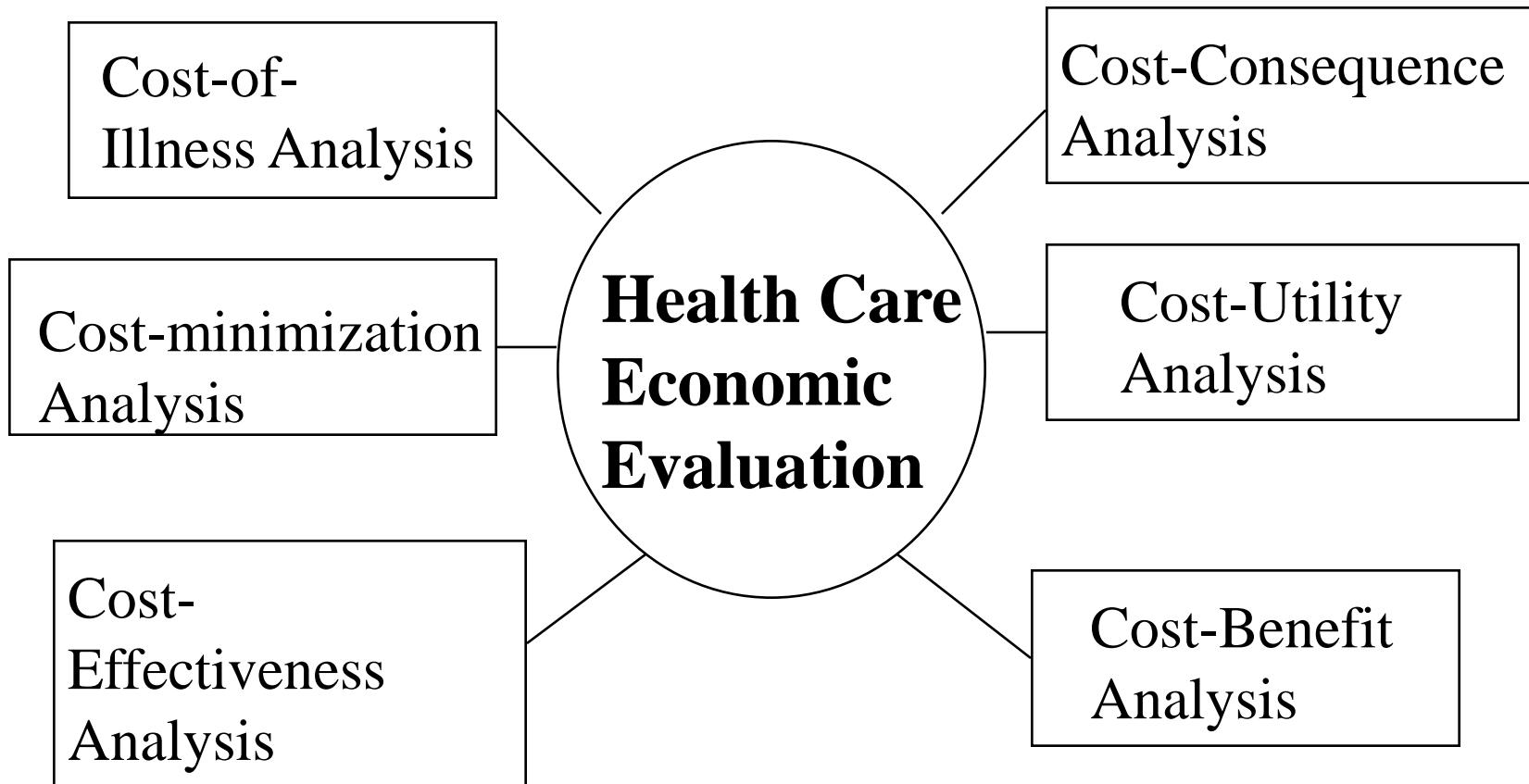
- Evaluation of costs and benefits of a healthcare intervention to assist in decision making
- Does an intervention when used to prevent, diagnose, or treat an illness:
 - improve clinical outcomes...enough to
 - justify the additional dollars spent compared with alternative uses of the same money?

Cost-effectiveness analysis

- Quantitative framework for evaluating the complex and often conflicting factors involved in the evaluation of health care technologies
- Evaluate many types of costs and benefits
- Provides comparison to alternative treatment strategies

What is CEA not?


- It is not:
 - A method to show which interventions **reduce costs**.
 - A method that **removes** individual (patient) or group responsibility for making clinical and financial decisions.
 - A method that generates **distribution-neutral** results.

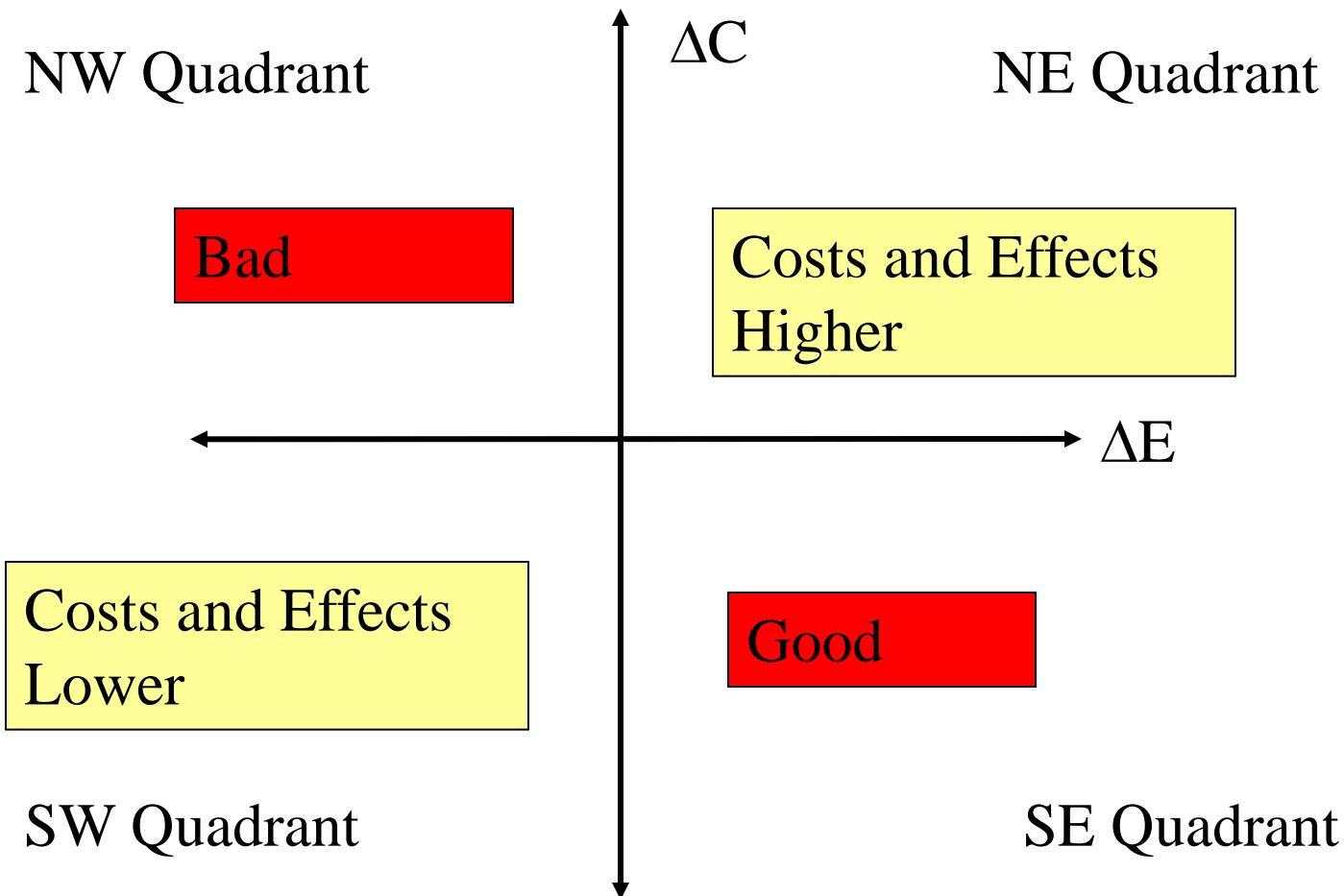

Tools

COSTS

CONSEQUENCES

Identified Measured Value

A multitude of approaches


Types of Economic Evaluation in Health Care				
Study Design	Costs Measured?	Outcomes Measured?	Strengths	Weaknesses
Cost-minimization	Yes	Not necessary	Easy to perform	Useful only if outcomes are the same for both interventions
Cost-benefit	Yes	Yes, in monetary terms	Good theoretical foundation; can be used within health care and across sectors of the economy	Less commonly accepted by health care decision makers; evaluation of benefits methodologically challenging
Cost-effectiveness	Yes	Yes, in clinical terms (events, life years)	Relevant for clinicians; Easily understandable	Cannot compare interventions across disease areas when using disease specific endpoints.
Cost-utility	Yes	Yes, in quality-adjusted life-years (QALY)	Incorporates quality of life; Comparable across disease areas and interventions; Standard	Requires evaluation of patient preferences; Can be difficult to interpret

Incremental Cost-Effectiveness

Therapy A vs. Therapy B:

$$\frac{\text{Cost (B)} - \text{Cost (A)}}{\text{Effectiveness (B)} - \text{Effectiveness (A)}}$$

Interpretation of CEA results

Deciding what interventions to pay for using CEA

- Each ratio must be compared with others to determine a rank order list for setting funding priorities.

Cost-effectiveness of commonly used interventions (per life-year gained)

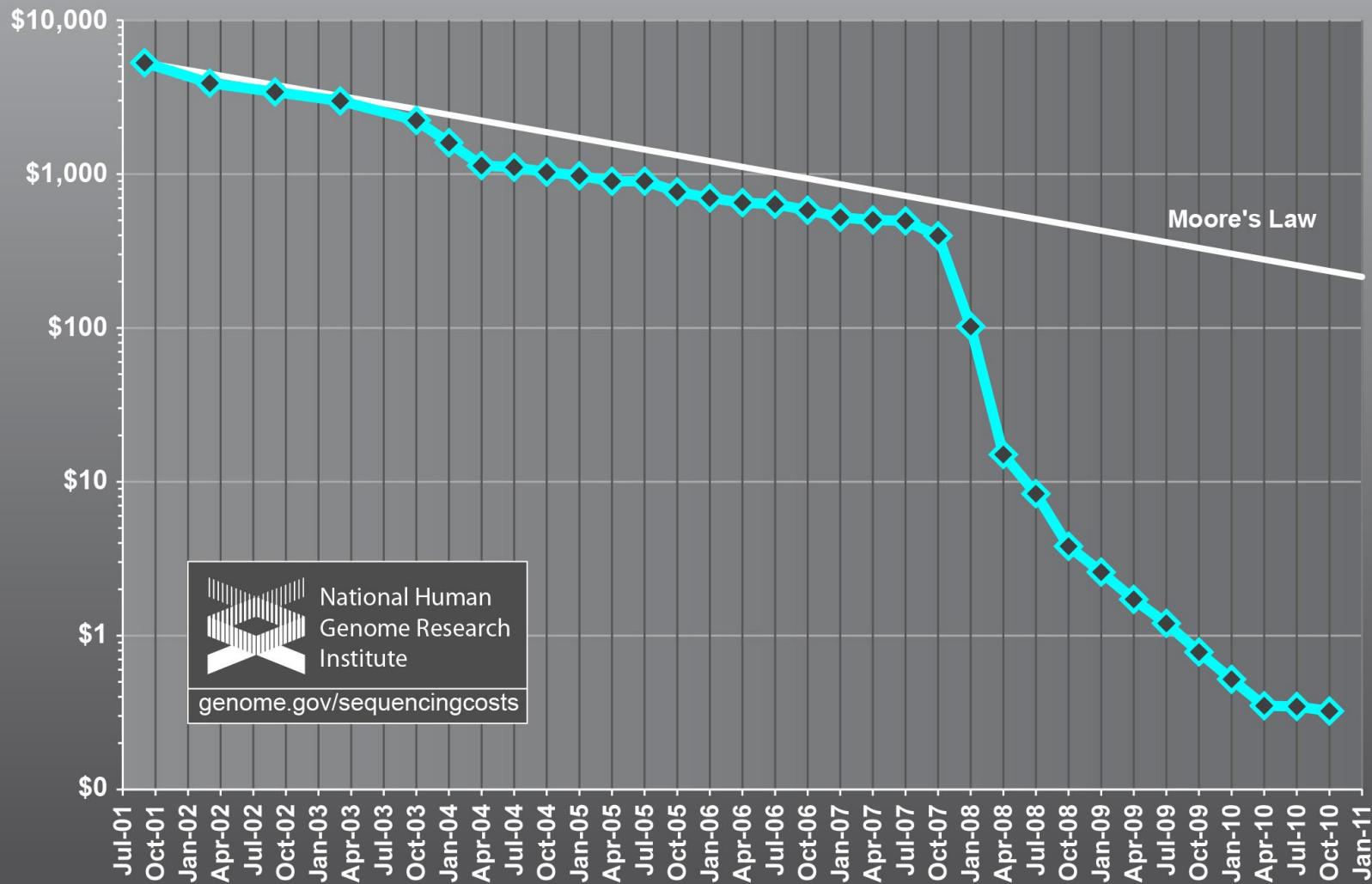
ABMT for relapsed Hodgkins	\$421,000
Liver transplantation	\$237,000
Mammography (<50 yo)	\$232,000
2-vessel CABG	\$106,000
ACE for moderate HTN	\$82,600
Mammography (>50 yo)	\$20-50,000
HCTZ for moderate HTN	\$23,500
Left main CABG	\$17,400
Treatment A	\$10,000
Smoking cessation (men)	\$1,300

What is the budget constraint of the health plan or Institution?

ABMT for relapsed Hodgkins	\$421,000
Liver transplantation	\$237,000
Mammography (<50 yo)	\$232,000
2-vessel CABG	\$106,000
ACE for moderate HTN	\$82,600
Mammography (>50 yo)	\$20-50,000
HCTZ for moderate HTN	\$23,500
Left main CABG	\$17,400
Treatment A	\$10,000
Smoking cessation (men)	\$1,300

?

Health Economics Summary


- Helping people to understand what's at stake
 - what's the decision
- Careful CEA is about analyzing decisions
 - Clarify assumptions
 - Evaluate uncertainties
 - Not primarily about costs, but about trade-offs

Simple Misconceptions

1. 'Cost-effective' = 'Cost-saving'
2. Expensive interventions are not cost-effective.
3. Inexpensive interventions are cost-effective.

II. Is Genome Sequencing Cost Effective?

Cost per Megabase of DNA Sequence

Is NextGen Sequencing Cost Effective?

- It's not about the cost, as much as ...
what is the outcome being measured?
 - base pairs sequenced
 - number of variants identified
 - diagnoses
 - clinical actions
 - patient outcomes – morbidity and mortality
- ... and what is the comparator?

Cost-effectiveness framework

TABLE 36.1

Factors that influence the cost-effectiveness of genomic testing strategies

	Factors to assess	Features that favor cost-effectiveness
Gene	Prevalence	<ul style="list-style-type: none">Variant allele is relatively common
	Penetrance	<ul style="list-style-type: none">Gene penetrance is high
Test	Sensitivity, specificity, cost	<ul style="list-style-type: none">High specificity and sensitivityA rapid and relatively inexpensive assay is available
Disease	Prevalence	<ul style="list-style-type: none">High disease prevalence in the population
	Outcomes and economic impacts	<ul style="list-style-type: none">High untreated mortalitySignificant impact on quality of lifeHigh costs of disease management using conventional methods
Treatment	Outcomes and economic impacts	<ul style="list-style-type: none">Reduction in adverse effects that significantly impact quality of life or survivalSignificant improvement in quality of life or survival due to differential treatment effectsMonitoring of drug response is currently not practiced or difficultNo or limited incremental cost of treatment with pharmacogenomic strategy

Adapted from Flowers and Veenstra (2004).

Scenarios for Discussion

- 3 points in lifetime
 - preconception care
 - pulmonary embolism
 - lung cancer
- 3 types of Care
 - targeted sequencing
 - WGS but targeted return + high effect IFs
 - WGS with full disclosure

A WGS 'Value Chip'?

	Prevalence	Penetrance	Test cost	Disease severity	Intervention cost	Intervention outcomes
Preconception	Red	Green	Yellow	Dark Green	Yellow	Dark Green
DVT/PE	Light Green	Yellow	Dark Green	Yellow	Dark Green	Light Green
Lung Cancer	Yellow	Dark Green		Yellow	Yellow	Dark Green

III. Three Challenges

1. Incentives for test development

- Private vs. public role

2. Evidence-based policy

- Evidence thresholds
- Measuring personal utility

3. Impact on healthcare system

- Behavior of patients and providers
- Healthcare systems
- Health insurance

Challenge 1 – Test Development

- At what point in decreasing sequencing cost are incentives for test development a problem?
- Does provision of clinical interpretation become the value proposition?
- Are reimbursement systems designed to reward this?
 - Value-based payment policies

Challenge 2 – Policy Development: Personal Utility

- Does the ‘value of knowing’ to an individual matter?
 - to whom?
- Patient-centered outcome
- How do we measure it?
 - Conjoint analysis, aka
 - Discrete Choice Experiments (DCE)

Challenge 2 – Policy Development: Evidence thresholds

- Does a lower cost of obtaining information lead to lower evidence threshold for using that information?
- Value of Information (VOI) analysis may provide a framework for ‘evidence-based’ decision making in an environment of very limited evidence

Challenge 3 – Healthcare Impacts

- How will patients respond? Providers?
 - Need for comparative studies
- Healthcare system response?
 - Investment in services
 - Pathways of care
- Insurance
 - What will be covered?
 - What won't GINA solve?

IV. Comparative Effectiveness Research (CER)

The NEW ENGLAND JOURNAL *of* MEDICINE

Perspective
MAY 7, 2009

Does Comparative-Effectiveness Research Threaten Personalized Medicine?

Alan M. Garber, M.D., Ph.D., and Sean R. Tunis, M.D.

What's unique about CER? It includes all of the following

- Stakeholder-informed prioritization and design of studies
- Direct, head-to-head comparisons
- A broad range of beneficiaries:
 - patients, clinicians, purchasers, and policy makers.
- Study populations representative of clinical practice
- Focus on patient-centered decision-making
 - tailor the test or treatment to the specific characteristics of the patient.

Patient-Centered Outcomes Research Institute (PCORI): Recent RFA

- Studies that investigate the key determinants of the outcomes patients experience following treatment decisions...
- Special emphasis is placed on studies ... considering ... that results may differ among patient groups based on patient characteristics
- Studies that compare the use of prognostication/risk-stratification tools with usual clinical approaches

Summary

- The intersection between genome sequencing and health economics is multifaceted and dynamic
- It's not about costs (only)
- Health economics can provide a variety of tools and frameworks to help guide implementation of genome sequencing in clinical practice

Thank You