June 2025

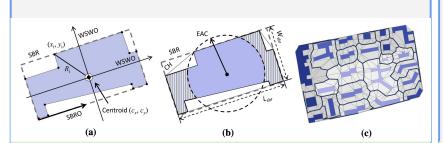
Spatial Representation Learning: What, How, and Why

GENGCHEN MAI

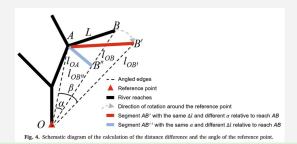
Assistant Professor, Department of Geography and the Environment, The University of Texas at Austin

Presentation at the NASEM GGSC Meeting - Evolving Geodigital Data: Opportunities, Challenges & Disruptions

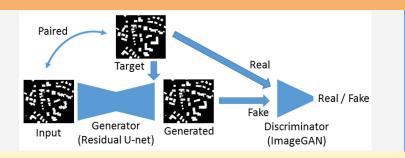
Acknowledgement:



Comprised Approaches Due to the Lack of SRL



Feature Engineering



Extract features from building polygons (Yan et al, 2022)

Extract features from drainage patterns (Yu et al, 2022)

Data Conversion

Building polygons to raster images (Feng et al, 2019)

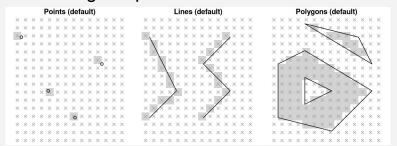
Simple styled maps	Transfer styled maps	Target styled maps
	2 run H 0000	Content In Part of the Content In And Content In Part of the Content In Co

Map vector files to raster images (Kang et al, 2019)

Comprised Approaches Due to the Lack of SRL

Feature Engineering

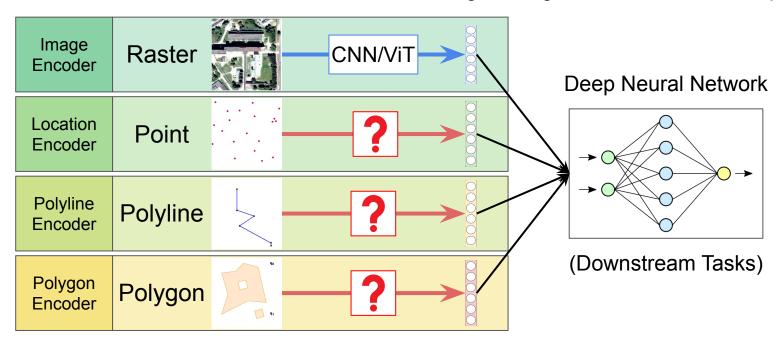
Heavily relies on domain knowledge



Hard to generalize to new regions and tasks

Data Conversion

 Reduced data precision and increase data storage requirement


Modifiable areal unit problem (MAUP)

0	×	0	*	0	×	0	*	0	*	0	*
*	0	*	0	*	0	*	0	*	0	*	0
0	×	0	*	0	*	0	*	0	×	0	*
*	0	*	0	*	0	*	0	*	0	*	0
1) I	Dist	ribu	tion B		b2)	Unfa	air		b3)	Fair	

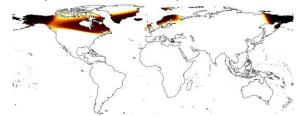
SPATIALLY The University of Tex

Spatial Representation Learning (SRL)

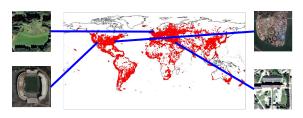
Directly learning neural spatial representations of various types of spatial data in their native data format without the need for feature engineering or data conversion step

- Gengchen Mai, et al. Towards General-Purpose Representation Learning of Polygonal Geometries. GeoInformatica 2023.
- Gengchen Mai, et al. SRL: Towards a General-Purpose Framework for Spatial Representation Learning (Vision Paper), In: ACM SIGSPATIAL 2024.
- Gengchen Mai, et al. Towards the Next Generation of Geospatial Artificial Intelligence, International Journal of Applied Earth Observation and Geoinformation, 2025.

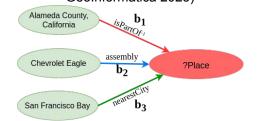
Various Geospatial Tasks



Ecology:

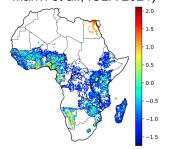

Species Distribution Modeling

(Mac Aoda et al, ICCV 2019; Mai et al., ICLR 2020; Mai et al., ISPRS PHOTO 2023; Mai et al. ICML 2023)


Remote Sensing:

RS Image Classification (Mai et al., ISPRS PHOTO 2023; Mai et al. ICML 2023; Li et al., SIGSPATIAL 2023)

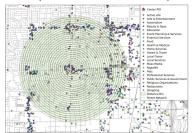
Geospatial Semantics:


Geographic Question Answering (Mai et al., TGIS 2020; Mai et al., GeoInformatica 2023)

Sustainability:

Wealth Index Prediction

(Sheehan et al., KDD 2019; Manvi et al., ICLR 2024)

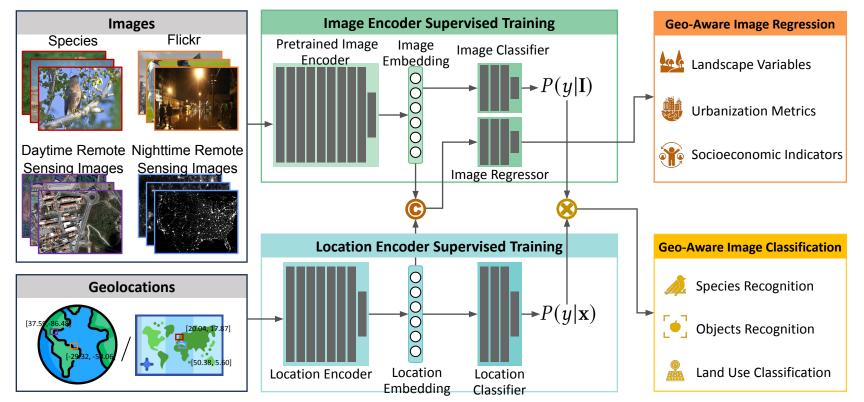

Earth System Science:

Weather Forecasting (Nguyen et al., ICML 2023)

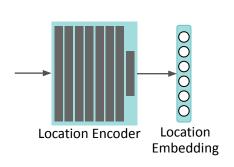
Urban Data Science:

POI Type Prediction (Mai et al., ICLR 2020)

TorchSpatial


 A location encoding framework that consolidates 15 location encoders and necessary model building blocks for future location encoders.

- A LocBench benchmark that encompassing 7 geo-aware image classification datasets and 10 geo-aware image regression datasets
- An evaluation framework to quantify geo-aware models' overall performance and their geographic bias, with a novel Geo-Bias Score metric



Location Encoders

The process of representing a location as a high dimensional vector (location embedding) such that it can be used for downstream tasks.

$$Enc(\mathbf{x}) = \mathbf{NN}(PE(\mathbf{x}))$$

$$\mathbf{x} \in \mathbb{R}^L \; (L=2,3)$$
 : input location

$$PE(\mathbf{x}) \in \mathbb{R}^W$$
 : position encoder

 $\mathbf{NN}(\cdot): \mathbb{R}^W o \mathbb{R}^d$: learnable neural nets

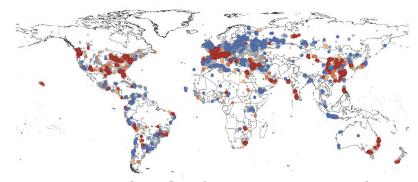
- Gengchen Mai, et al. Multi-Scale Representation Learning for Spatial Feature Distributions using Grid Cells. In ICLR 2020.
- **Gengchen Mai**, et al. A review of location encoding for GeoAl: methods and applications. International Journal of Geographical Information Science 36, no. 4 (2022): 639-673.
- **Gengchen Mai**, et al. Sphere2Vec: A general-purpose location representation learning over a spherical surface for large-scale geospatial predictions. ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023): 439-462.
- Gengchen Mai, et al. CSP: Self-supervised contrastive spatial pre-training for geospatial-visual representations. In ICML 2023.

TorchSpatial: Location Encoders

Category	Location Encoder	Description	Year
	tile	A discretization-based location encoder	2014
	wrap	A sinusoidal location encoder with $NN^{wrap}()$	2019
	wrap + ff n	A sinusoidal location encoder with $NN^{ffn}()$	2023
2D	rbf	A kernel-based location encoder	2020
	rff	A kernel-based location encoder	2020
	Space2Vec-grid	A set of sinusoidal multi-scale location encoders	2020
	Space2Vec-theory	A Set of Siliusolual Huiti-Scale location encouers	2020
	xyz	Transform latitude-longitude into 3D Cartesian coordinates	2023
	NeRF	A multiscale version of xyz	2021
	Sphere2Vec-sphereC		2023
3D	Sphere2Vec-sphereC+	A set of multi-scale location encoders for spherical surface based	2023
טט	Sphere2Vec-sphereM	on Double Fourier Sphere	2023
	Sphere2Vec-sphereM+	(DFS) and Space2Vec.	2023
	Sphere2Vec-dfs		2023
	Siren(SH)	A learned Double Fourier Sphere location encoder	2024

SPATIALLY EXPLICIT AI

TorchSpatial: LocBench Datasets


Dataset	Category	Label	Task	Instances
BirdSnap				19,576
BirdSnap+	fine areined enecies		-	43,470
NABirds+	fine-grained species	species		23,699
iNat2017	images		classification	675,170
iNat2018				461,939
YFCC	Flickr images	object categories		36,146
fMoW		land use types		1,047,691
Population Density	romoto concina	population density		425,637
Forest Cover	remote sensing	forest cover ratio		498,106
Nightlight Luminosity	images	nightlight luminosity		492,226
Elevation		elevation		498,115
Asset Index		asset wealth index		2,079,036
Women BMI	doutime remete	women BMI	regression	1,781,403
Water Index	daytime remote	water quality index		2,105,026
Child Mortality	sensing	child mortality rate		1,936,904
Sanitation Index	imagery & nightlights	sanitation index		2,143,329
Women Edu	images	women educational		
VVOITIETT EUU		attainment		2,910,286

TorchSpatial: Geo-Bias Score Metrics

Geographic bias: a phenomenon in which an AI model performs differently across geographic regions and its predictions are biased toward some predominated regions.

Lower geographic bias means the possibility of encountering a wrong prediction is more uniform across the region of interest

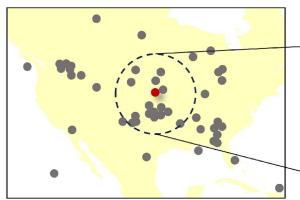
Hot spot analysis of HIT@1 of space2vec-theory on fMoW

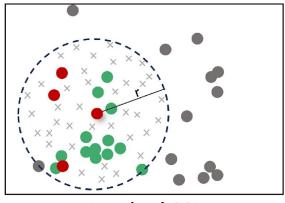
Can we use the classic spatial statistic measures (e.g., Moran's I) to quantify the geographic bias?

- Classic spatial autocorrelation statistics metrics can't measure geographic bias because these statistics are not numerically comparable across different spatial patterns.
- Moran's I values only tell whether a spatial sample is significantly autocorrelated or not. It is non-comparable across scenes.

Spatial Self-Information (SSI)

 Spatial Self-Information (SSI): using a Gaussian distribution to approximate the probability of observing certain types of spatial patterns.


The lower the probability, the less likely the current spatial patterns arise randomly, and consequently the stronger the spatial autocorrelation.


TorchSpatial: Geo-Bias Score metric

Using SSI for Geo-Bias quantification: higher SSI scores indicates stronger the spatial autocorrelation, thus higher geographic bias

sample point

Extract a low-performance observation's neighborhood by radius r.

GitHub

Website

Datasets

Unmarked SSI

The intrinsic sampling geo-bias regardless of the markers (model performances)

Marked SSI

The geo-bias of model performance, considering both where the data are observed and how the model performs at these locations

Geo-Bias of Various Foundation Models

Table 4: Accuracy and Global Geo-Bias Scores of remote sensing image classification. All geo-bias scores use an ROI radius of 0.01 radian. **Bold** numbers indicate the best performance or the lowest geo-bias. **Bold** numbers indicate the best performance or the lowest geo-bias scores.

	Model	Acc ↑	U-SSI ↓	M-SSI ↓	SG-SRE \	DL-SRE	DS-SRE \	. SPAD↓
le	Hyperparam		-	-	0.01	0.01	8	-
1 =	GPT-40	5.72	516.80	63.96	3.81	1.32	0.76	18.25
-se	CROMA ft	52.67	560.80	447.89	61.47	16.79	19.94	39.19
MoW-sentinel	CROMA lp	31.46	560.11	466.31	152.72	38.69	42.17	36.37
4	SatMAE ft	64.77	560.96	16.29	2.16	0.57	0.74	12.84
	SatMAE lp	62.76	561.29	14.06	2.47	0.61	0.88	12.36
+	Hyperparam	-	-	-	0.05	0.005	8	-
E S	GPT-40	41.33	399.27	276.18	7.87	54.87	62.21	66.93
WorldStrat	CROMA ft	60.78	354.01	275.65	12.91	18.89	23.46	63.23
W0.	CROMA lp	58.73	369.52	305.35	3.98	10.59	21.51	66.56
-	SatMAE ft	52.37	418.63	6.00	0.06	0.11	0.14	16.51
	SatMAE lp	44.29	416.44	6.95	0.06	0.12	0.16	15.29
+-	Hyperparam	-	-	-	0.05	0.005	8	
	GPT-40	51.92	404.86	200.12	3.82	12.06	12.40	56.40
E S	CROMA ft	69.61	359.10	251.67	7.64	13.21	14.67	52.27
- Wo	CROMA lp	65.79	379.79	271.37	4.64	8.28	9.09	56.12
	SatMAE ft	66.56	410.33	19.23	0.07	0.18	0.15	15.81
	SatMAE lp	45.36	416.16	7.06	0.08	0.14	0.16	16.07
	Hyperparam	-	=	-	0.01	0.005	12	-
AT	GPT-40	44.89	119.43	79.59	2.62	1.29	0.64	53.52
EuroSAT	CROMA ft	97.43	115.72	96.58	0.25	0.67	0.48	8.67
<u>B</u>	CROMA lp	92.87	100.00	60.35	0.56	0.44	0.37	19.23
	SatMAE ft	74.30	115.93	13.02	0.03	0.07	0.05	15.65
	SatMAE lp	56.54	113.19	6.43	0.02	0.07	0.06	34.91

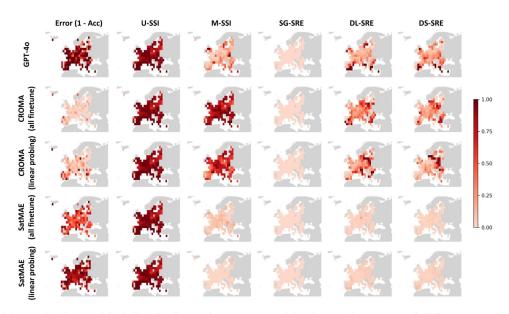
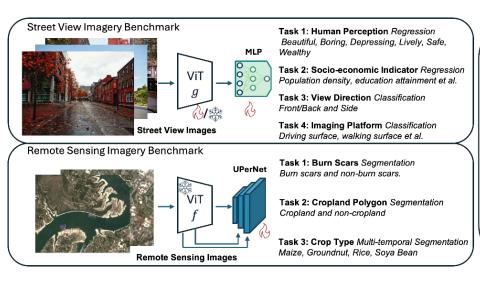


Figure 5: Geographical distributions of error rate and local geo-bias scores of different remote sensing foundation models on EuroSAT. The spatial distributions of U-SSI across models are the same because local U-SSI scores are unmarked and only dependent on data instead of models.



Evaluation GAIR on 10 downstream tasks (22 datasets):

- Street View Image Benchmark Tasks
- Remote Sensing Imagery Benchmark Tasks
- Location Benchmark Task

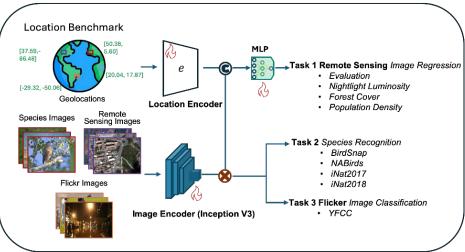


Table 2. Performance comparison (mIoU ↑) of GAIR and other Geo-Foundation Models (GeoFMs) across four remote sensing benchmark datasets. SS refers to semantic segmentation tasks, while Linear and L-TAE [22] represent two different multi-temporal augmentation strategies

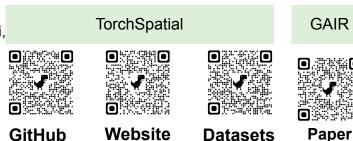
Task	Single	Temporal SS	Multi Temporal SS Crop Type		
lask	Burn Scars	Cropland Polygon			
Model	Duili Scais	Cropiand Porygon	Linear	L-TAE	
CROMA [20]	81.95	25.65	47.02	49.38	
DOFA [76]	78.96	27.07	49.81	51.33	
GFM-Swin [52]	76.17	27.19	39.72	46.98	
Prithvi [34]	82.67	26.86	39.92	43.07	
RemoteCLIP [39]	75.55	25.12	46.50	52.05	
SatlasNet [6]	79.69	25.13	46.97	46.97	
Scale-MAE [58]	76.71	21.47	21.39	25.42	
SpectralGPT [28]	80.47	26.75	53.50	46.95	
S12-Data2Vec [61]	81.14	24.23	54.01	54.03	
S12-DINO [61]	81.44	25.62	46.56	48.66	
S12-MAE [61]	80.86	24.69	46.28	45.80	
S12-MoCo [61]	80.76	25.38	44.22	48.58	
GAIR-MAE	74.15	22.77	34.18	40.44	
GAIR w/o Loc	82.94	43.28	55.41	54.32	
GAIR	83.26	43.35	55.53	54.01	

Table 3. Evaluation results on LocBench [74], including three tasks: image regression (4 datasets), species recognition (4 datasets), and Flickr image classification (1 dataset). For image regression tasks, we report the R^2 score (\uparrow), while for species recognition and Flickr classification, we report the Top-1 accuracy (\uparrow).

Initialization	Task	Image Regression					
Imuanzation	Model	Population Density	Forest Cover	Nightlight	Luminosity	Elevation	
Random Init.	No Prior	0.38	0.52	0.33		0.27	
Kandom mit.	RFF	0.57	0.84	0.35		0.76	
GeoCLIP Init.	RFF	0.61	0.84	0.37		0.78	
GAIR Init.	RFF	0.67	0.86	0.40		0.82	
Initialization	Task	Species Recognition				Flicker Classification	
Imuanzation	Model	BirdSnap	NABirds	iNat2017	iNat2018	YFCC	
Dandam Init	No Prior	70.07	76.08	63.27	60.20	50.15	
Random Init.	No Prior RFF	70.07 70.07	76.08 81.63	63.27 67.73	60.20 71.66	50.15 51.13	
Random Init. GeoCLIP Init.							

Paper

Conclusion


Takeaways

- Spatial Representation Learning (SRL) is a key component for Geospatial AI model development
- Geo-Bias is a unique and important issue for geospatial data and model requiring attention
- Geo-Foundation Model is one major research direction for GeoAl where SRL will play a major role

Further Thoughts

• Other GeoEthics concerns: geo-privacy, spatiotemporal replicability, and explainability

- Wu, Nemin, Qian Cao, Zhangyu Wang, Zeping Liu, Yanlin Qi, Jielu Zhang, Joshua Ni, Xiaobai Yao, Hongxu Ma, Lan Mu, Stefano Ermon, Tanuja Ganu, Akshay Nambi, Ni Lao*, Gengchen Mai*. TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning. NeurIPS 2024 Data and Benchmark Track. *Corresponding Author
- Zeping Liu, Fan Zhang, Junfeng Jiao, Ni Lao*, Gengchen Mai*. "GAIR: Improving Multimodal Geo-Foundation Model with Geo-Aligned Implicit Representations."
 Under Review 2025. *Corresponding Author

