

SUSTAINMENT MANAGEMENT SYSTEM (SMS) SUMMIT 2025

July 9th, 2025

2025 Sustainment Management System (SMS) Virtual Summit

Hosted by the National Academies of Sciences and the Federal Facilities
Council

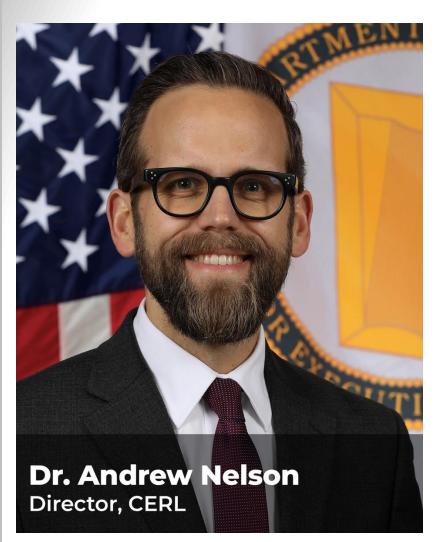
Facilitated by the Sustainment Management Technical Center of Expertise (SMS-TCX)

Wednesday, July 9, 2025

All times in US Eastern.

0830-0835	Welcome, SMS TCX Chief				
0835-0840	National Academies/Federal Facilities Council Updates, Director FFC				
0840-0900	Keynote, Deputy Assistant Secretary of Defense for Infrastructure Modernization & Resilience				
0900-0930	Keynote, CERL Director				
0930-0945	Break				
0945-1030	SMS TCX Updates, SMS TCX Chief				
1030-1400 1030-1115 1115-1200	Buildings End-to End Demo — Import, Inventory, and Assess — Workspace creation, Field App, Workspace QA/QC				
1200-1300	Lunch				
1300-1400	Buildings End-to End Demo (cont.) — Metric Roll up, Work Analysis, and Power BI Reporting				
1400-1430	Domain Highlights – Utility Overview				
1430-1445	Break				
1445-1515	Working Group Updates – Working Group Status Updates				
1515-1600	Help/ Training Content				
1600-1700	Research Topic Overview — E-SMS Innovation Lab				

Event Page/Agenda: https://www.nationalacademies.org/event/45241_07-2025_federal-facilities-council-2025-sustainment-management-system-sms-summit


Sessions livestreamed via Zoom Webinars. Sessions will be recorded and intended to be posted following the event.

Questions can be submitted via the Zoom Q&A feature, and we'll answer as many as time allows.

DR. ANDY NELSON KEYNOTE

RDC FRIE

U.S. ARMY

Dr. Andrew (Andy) Nelson is director of the U.S. Army Engineer Research and Development Center's (ERDC) Construction Engineering Research Laboratory (CERL) in Champaign, Illinois. As the CERL director, he is responsible for the activities of a highly interdisciplinary team of approximately 300 federal and contracted staff conducting research in materials and structures, energy, training lands and heritage, emergency and operational support, warfighter engineering and installation readiness.

Dr. Nelson has served in numerous roles throughout ERDC including as the CERL technical director for Infrastructure Science and Engineering, director of the ERDC International Research Office, which is based in London, and chief of the CERL Energy Branch. He began his career as a research physicist at CERL, with a diverse research portfolio including energy efficient mitigation of biological particulate contamination in indoor air, quantification and atmospheric impacts of the biogeochemical nitrogen cycle and water purification/treatment for contingency operations. In addition to these permanent assignments, he completed a one-year assignment as a visiting researcher at the U.K. Defence Science and Technology Laboratory at Porton Down through the U.S. Army Engineer and Scientist Exchange Program and was detailed to the Office of the Assistant Secretary of the Army for Installations, Energy and Environment in 2016 as the ERDC liaison officer.

Dr. Nelson holds a B.A. in Physics from Illinois Wesleyan University and M.S. and Ph.D. degrees in Environmental Engineering from the University of Illinois at Urbana-Champaign. He has received multiple Army Civilian Service Awards including the Meritorious Civilian Service Award and has been recognized with the ERDC R&D Achievement Award and the ERDC Outstanding Team Award, among others. He was received the Association of Environmental Engineering and Science Professors outstanding master's thesis award and was a DoD Science, Mathematics, and Research for Transformation Scholarship recipient in 2009.

https://www.erdc.usace.army.mil/About/Leadership/Bio-Article-View/Article/2701622/dr-andrew-nelson-sstm/

U.S. Army Corps of Engineers

Service to the Nation Since 1775

Lincoln Memorial – 1922 | Washington Monument – 1884 | U.S. Capitol – 1800

Military Construction and Combat

The Pentagon - 1941

Mississippi River and Tributaries Project – 1928-Present

Panama Canal - 1914

Dam – 1937

Army S&T Enterprise

Where USACE And ERDC Align in the Army Science & Technology Enterprise

POLICY, **BUDGET AND OVERSIGHT**

Secretary of the Army

Under Secretary of the Army

Assistant Secretary of the Army for **Acquisitions, Logistics** and Technology (ASA(ALT))

Deputy Assistant Secretary of the Army for Research and Technology (DASA(R&T))

OPERATIONAL AND S&T PROGRAM EXECUTION

Army Futures Command (AFC)

Medical Research and Development Command (MRDC)

Army Artificial Intelligence **Integration Center** (AI2C)

Combat Capabilities Development Command (DEVCOM)

U.S. Army Corps of Engineers (USACE)

U.S. Army Engineer Research and **Development Center**

U.S. Army Space and Missile Defense Command (SMDC)

Space & Missile **Defense Command Technical Center** (SMDTC)

Headquarters, **Department of** the Army (HQDA) **G-1 Personnel**

U.S. Army Research Institute for Behavioral and Social Sciences (ARI)

Non-Traditional Laboratories

Army Cyber Capabilities **Development Integration** Directorate

Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO CBRND)

U.S. Army Training and Doctrine Command (TRADOC) Army Medical Center of Excellence (MEDCoE)

U.S. Military Academy

Army Cyber Command (ARCYBER) Technical Warfare Center

Deputy Under Secretary of the Army, Army Analytics Group (AAG)

CRREL COLD RECIONS RESEARCH AND ENGINEERING

Cold Regions Research and **Engineering** Laboratory

CERL CONSTRUCTION OF THE PROPERTY OF THE PROPE

Construction **Engineering Research Laboratory**

Geospatial Research Laboratory

Hydraulics Laboratory

Information **Technology** Laboratory

Environmental Laboratory

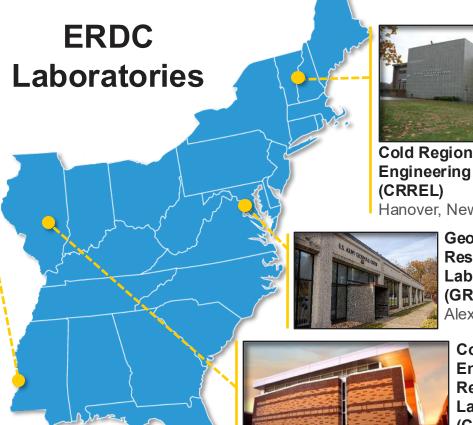
Geotechnical and **Structures** Laboratory

ERDC Locations

Seven Laboratories in Four States

Coastal and **Hydraulics** Laboratory (CHL)

Environmental Laboratory (EL)



Geotechnical and Structures Laboratory (GSL)

Information **Technology** Laboratory (ITL)

Cold Regions Research and **Engineering Laboratory**

Hanover, New Hampshire

Geospatial Research Laboratory (GRL)

Alexandria, Virginia

Construction **Engineering** Research Laboratory (CERL)

Champaign, Illinois

Field Offices

Permafrost Tunnel Research Facility

Fox, Alaska

Alaska Research Office

Fairbanks, Alaska

Lewisville Aquatic Ecosystem Research Facility

Lewisville, Texas

Contingency Base Integration Technology Evaluation Center (CBITEC)

Fort Leonard Wood, Missouri

Field Research Facility

Duck, North Carolina

Corbin Field Station

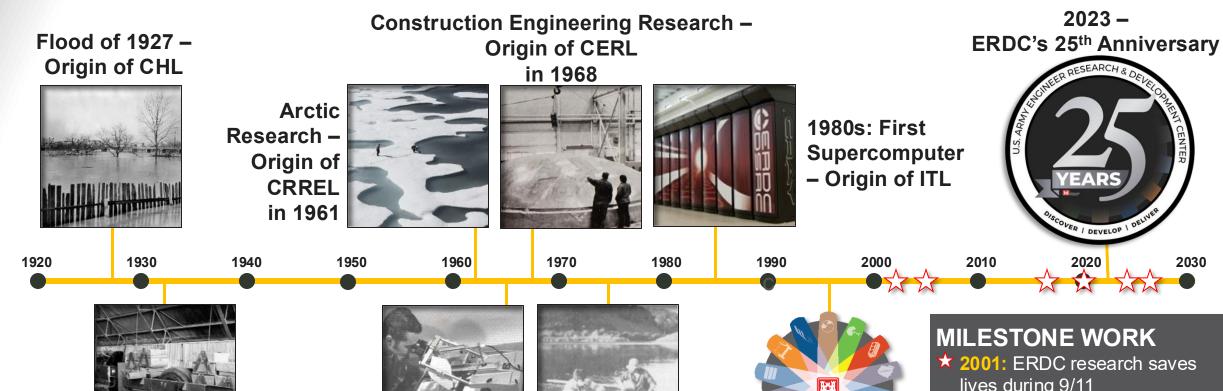
Woodford, Virginia

Extreme Exposure Station

Treat Island, Maine

FRDC International Research Office

London, England


A World-Class Research & Development Organization that Discovers, Develops and Delivers New Ways to Make the World Safer and Better Every Day

ERDC's History

Solving Challenges Has Been Our Mission From Year One

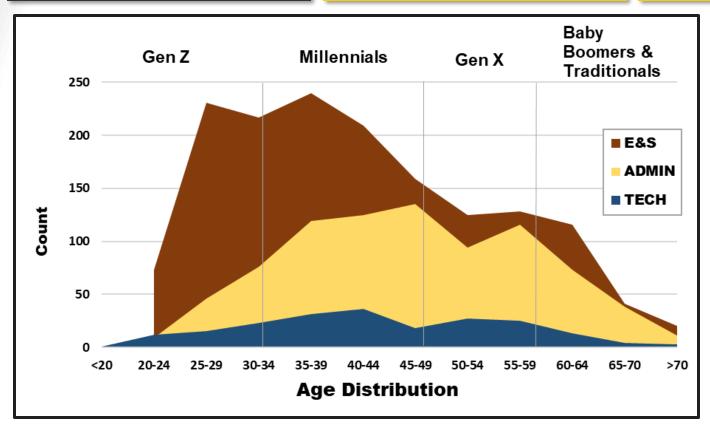
WWII: Portable Airfields-**Precursor** to GSL 1932

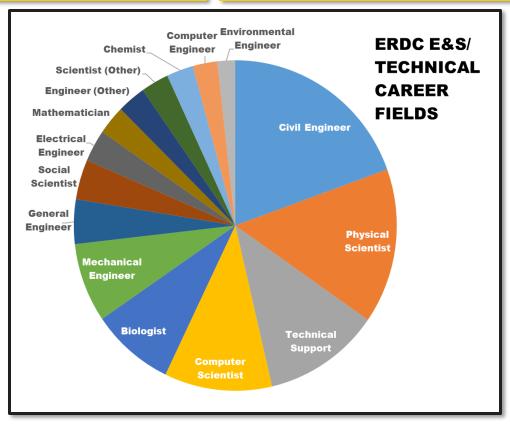
1970s: **Environmental** Research -**Origin of EL**

1998 **ERDC** established

- lives during 9/11
- ★ 2005: Post-Katrina Analyses
- ★ 2017: Hurricane Recovery (Harvey, Irma & Maria)
- ★ 2020: COVID-19 Pandemic Response
- ★ 2024: Francis Scott Key Bridge collapse
- ★ 2025: Lithuania Recovery Effort

ERDC's People are Our Greatest Strength


Highly Qualified, Highly Motivated to Solve Complex Challenges


Civilian FTE Employees

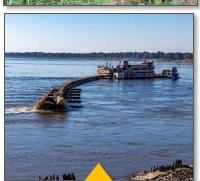
Engineers & Scientists (E&S)

E&S w/Advanced Degrees

E&S w/PhDs

^{*} Does not include other workforce population segments: student trainees, temp positions, active-duty military, AFP Interns, or contractors. Data reflects as of 09 MARCH 2025

ERDC Core Competencies


Unique Innovative Capabilities for the Nation & Warfighter

BATTLESPACE TERRAIN MAPPING AND CHARACTERIZATION

BLAST AND

COASTAL, RIVER AND ENVIRONMENTAL ENGINEERING

COMPUTATIONAL

PROTOTYPING

OF MILITARY PLATFORMS **SCIENCE AND ENGINEERING**

COLD REGIONS

MILITARY INSTALLATIONS AND **INFRASTRUCTURE**

ERDC's Synergy

We Excel at Extending Innovation Across Different Mission Spaces

U.S. ARMY WATERCRAFT AND SHIP SIMULATOR

Developed for CIVIL WORKS

A civilian pilot practices guiding barges down a river under specific wave and current conditions.

The same U.S. Army Watercraft and Ship Simulator and research team that supports USACE's Navigation mission...

Now Supports WARFIGHTERS

A Warfighter pilot practices driving a bridge erector boat (BEB) to place portions of an Improved Ribbon Bridge in a waterway

...also supports our Warfighters as they plan logistics-over-the-shore operations overseas.

Building Strong Relationships

XSOL

Examples of Army, USACE, Academia, Government and Industry Relationships

CONNECT:

Mechanisms & Authorities

MARTIN

ecosystems

BAE SYSTEMS

MVMOBS

The Nature Conservancy

30+ Federal Agencies (Excluding DoD, Tri-Services)

U.S. Army

Z

RNATI

Ш

Z

Raytheon Kenall

HARRIS

QUANTUM SIGNAL

145 Industries

London, England

ERDCWERX Innovation Ecosystem Investment

Identifying New Partnerships and Collaboration Between Industry and ERDC

ERDCWERX creates a streamlined path for collaboration and partnerships with Industry and Academia

ERDCWERX is located inside the Mississippi Center for Innovation & Technology (MCITy) building in downtown Vicksburg, MS.

Public Website for Doing Business with

https://www.erdc.usace.armv.mil/Business-With-Us/Technology-Transfer/

ERDC Licensing Opportunities

https://https://techlinkcenter.org/labs/erdd a42b4-2b75-46b7-ad95-7a445cf5aece

ERDCWERX Ecosystem https://www.erdcwerx.org

on 12 July 2024.

Corps of **Engineers**

9 Divisions **44 Districts**

ERDC International Research Office

Other Transaction Authority (OTA) (Civil Works and Military Programs)

Broad Agency Announcement (BAA) Authority

Cooperative Ecosystem Studies Units (CESU) National Network

Andy Nelson, PhD, SES

Director

Construction Engineering Research Laboratory U.S. Army Engineer Research and Development Center U.S. Army Corps of Engineers

Andrew.J.Nelson@usace.army.mil

Scan the QR code with your phone for instant access to **ERDC** websites and social media

SMS TCX OVERVIEW

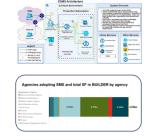
U.S. ARMY

The Sustainment Management System Technical Center of Expertise (SMS-TCX) provides infrastructure maintenance planning and management solutions through research, development, implementation, and sustainment of new and existing technologies to help agencies understand their facilities and infrastructure portfolio, alignment to mission requirements, and current and future financial requirements.

The SMS-TCX team engages with all real property asset management stakeholders to discover, develop, deliver, and sustain innovative solutions that increase operational awareness, business intelligence, analytics, automation and proactive planning to improve resilience, readiness, and efficiency.

R&D domains include but are not limited to installation infrastructure characterization, assessment, forecasting, cost accounting, capital optimization, O&M, energy use and reduction, cyber security, construction and major renewal, and mission

alignment.



CURRENT OPERATING ENVIRONMENT

"Readiness of our installations directly correlates with our ability to create combat power and project combat power."

Requirements to Support Warfighter

Need for adequate facilities to support warfighter missions and families

Need for accurate reporting of condition and cost of maintenance backlogs for DoD's facilities (GAO High Risk Report – Feb 2025)

Requirement to address overall condition and specific progress of select facility types (e.g., housing, transportation, maritime, innovation / RDT&E infrastructure) as identified in the NDAA

Need for data-driven decision-making to identify and prioritize increasing backlog of infrastructure investment needs and limited available resources to address those needs

Requirement to plan beyond current year needs

Real Property Reality

Aging Infrastructure

Limited availability of SRM funding has increased critical backlog

Siloed, manual, and inconsistent processes for condition assessment of various facility types

A consolidated, all-in-one platform for facility assessment, performance modeling, investment, and forecasting information for all real property domains and all organizations.

Benefits

- Provides one secure and standardized condition assessment across DoD for all real property assets
- Improves decision making by more accurately communicating risk / probability of failure to leadership
- Utilizes facility and assessment information to reduce workload on installation personnel by leveraging knowledge-based inspection methodology
- Expertise in emerging technologies embedded in evolution of program (e.g., CERL research outcomes on degradation models, costs, etc. can be directly incorporated into E-SMS)

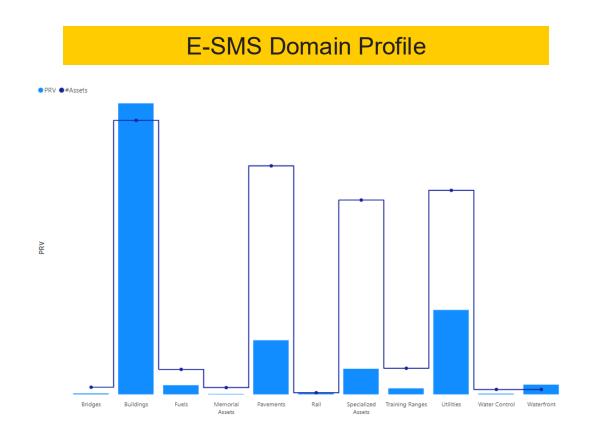
UTILIZATION OF E-SMS DATA

E-SMS data is used to support **readiness** and **resourcing** decisions. Recent requests of SMS results used to support Congressional, DoD and Service / Agency decisions include:

Readiness Support

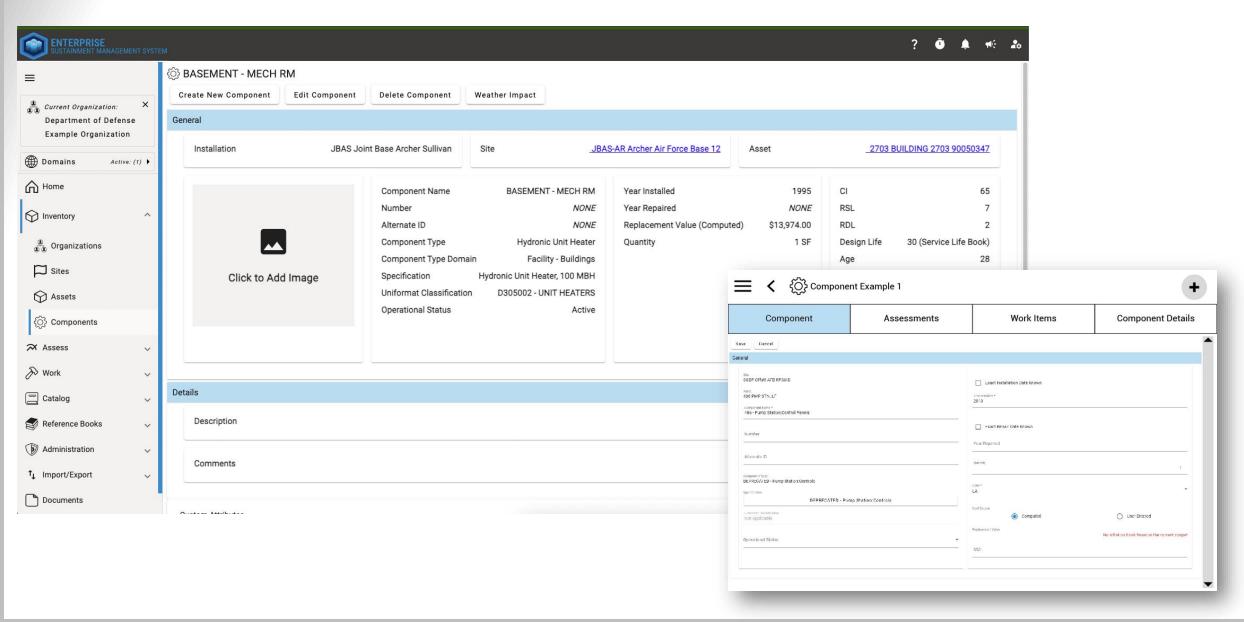
- Facility conditions for all buildings as well as condition for select facility types
- Backlog / Deferred
 Maintenance and Repair (DMR)
 Costs
- Recent requests include condition and backlog information on barracks, child development centers, motor pools, and hospitals. Also includes SFFAS 42 DMR Audit reporting

Planning Decision Support


- Decision support for planning of SRM and MILCON infrastructure investments
- Development of SRM requirements
- Validation of MILCON requirements
- Ability to conduct what-if / trade-off analysis
- Recent requests include
 - Comparison analysis of degradation over the FYDP for 100% sustainment funding vs other varying levels down to 75%
 - 30-year scenario based on multiple rebalanced facility investment plans

Funding Decision Support

- Validation and Prioritization of SRM funding decisions
- Validation and Prioritization of MILCON funding decisions


DoD's real estate portfolio is the largest in the federal government

- more than **710,000 assets** (buildings, structures, and linear structures)
- located on over 4,800 sites worldwide
- on over 26 million acres of land

VIEWS OF E-SMS

U.S. ARMY

U.S. ARMY

- Issuance of ATO
- E-SMS Field Application Development
- Standardization of E-SMS Functions (via DoD WGs)*
- Buildings IOC Begin Onboarding
- GIS Import Capability
- E-SMS Domain Preparation (via Domain WGs)
- Training Curriculum Developed

- E-SMS Field Application IOC
- Continue Buildings
 Onboarding
- Standardization of E-SMS Functions (via DoD WGs)*
- E-SMS Domain
 Preparation (via Domain WGs)
- Training Development
- Waterfront IOC
- Utilities IOC
- Fuels IOC
- Rail IOC

- Standardization of E-SMS Functions (via DoD WGs)*
- E-SMS Domain Preparation (via Domain WGs)
- Water Control IOC (FY27)
- Pavements IOC (FY28)
- Bridges IOC (FY28)
- Training Areas & Ranges (FY28)
- Specialized Assets (FY28)
- Memorial Assets (FY28)

E-SMS DOMAIN SCHEDULE

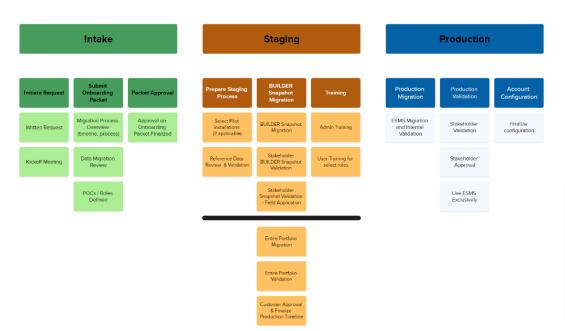
	2025	2026	2027
Buildings	IOC Complete		
Waterfront	Oct IOC Comple	ete	
Utilities	Oct 1 IOC Compl	ete	
Rail		Apr IOC Complete	
Fuels		Apr IOC Complete	
Water Control		Oct IOC Compl	ete
Pavements			Oct IOC Complete
Bridges			Oct IOC Complete
Training Areas & Ranges			Oct IOC Complete
Specialized Assets			Oct IOC Complete
Memorial Assets			Oct 1 IOC Complete

- Initial Operating Capability (IOC) = E-SMS has critical functionality for domain and organization can begin onboarding (e.g., BUILDER parity has been achieved in E-SMS Buildings)
- Timeline dependent on external variables and subject to change

E-SMS DOMAIN IOC STATUS (AS OF '25 SUMMIT)

Adh.	25		
RDC		®	

// <u></u>									DIONESINES DAVIS DE RECOVERN CENTER
	Real Property Inventory	Component Inventory	Assessment	Metrics	Work Analysis	Reporting	Overall Progress	Primary Actions	Customer Preparation Activities
Buildings	100%	100%	100%	100%	100%	100%	100%	IOC for buildings has been achieved. SMS team will finalize field application and integrate functionality ratings.	Onboarding of Services / Agencies
Utilities	100%	81%	88%	100%	100%	75%	88%	Utilities will align with most Buildings methodology and features. SMS team will complete component reference data (component catalog and costs), grouping feature, and will solution ArcGIS component updates.	Review and Align Utilities data (GIS, CMMS, other)
Waterfront	96%	66%	63%	75%	75%	85%	76%	SMS team will finalize component reference data (component catalog and costs), assessment criteria and integration into system. Metrics and work analysis calculations will primarily mirror buildings domain.	
Rail	96%	78%	50%	83%	68%		72%	Rail leverages criteria, methodology from legacy Railer. Requirements are currently being reviewed by SMEs and will be integrated into system.	
Fuels	96%	59%	67%	63%	29%	50%	61%	SMS team coordinating with DLA to finalize component reference data (component catalog and costs), and assessment criteria.	
Water Control	96%	66%	79%	75%	50%		73%	SMS team will finalize component reference data (component catalog and costs), assessment criteria and initiate integration into system.	
Pavement	94%	56%	54%	44%	68%	55%	64%	PAVER. Requirements are currently being reviewed by	Review and Align GIS data. Coordinate with SMS team for current E-70 files.
Bridges	79%	38%	42%	25%	25%	25%	42%	SMS team will develop component reference data (component catalog and costs), assessment criteria and initiate integration into system	
	79%	38%	46%	25%	25%	25%	43%	SMS team will develop component reference data (component catalog and costs), assessment criteria and initiate integration into system	
Specialized Assets	79%	38%	38%	25%	25%	25%	41%	SMS team will develop component reference data (component catalog and costs), assessment criteria and initiate integration into system	



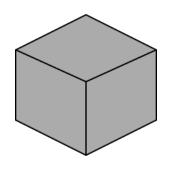
Begins with each Domain IOC

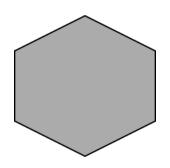
U.S. ARMY

- Each service / agency onboarding will include 3 phases: Intake, Staging, and Production
- A customized schedule is developed for each service / agency
- Training and strategic communications is critical for successful implementation

Customized schedule developed for each stakeholder

E-SMS BRANDING / LOGO UPDATE

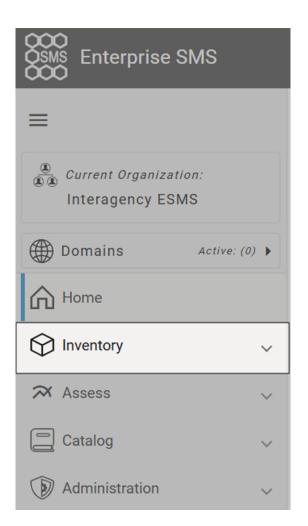



The Enterprise Sustainment Management System (E-SMS) Web Application is a cloud-based solution that brings all real property infrastructure domains under the umbrella of a single SMS application. Performing long-range work requirement projections across domains allows for comprehensive analysis of options and related effects. E-SMS provides increased control of user permission definition, teaming, and application; updated business intelligence reporting capabilities; and improved user experience.

The nesting cubes represent the layers of inventory, as well as paying homage to the hexagon badges SMS has historically used to represent E-SMS and domains.

Assess

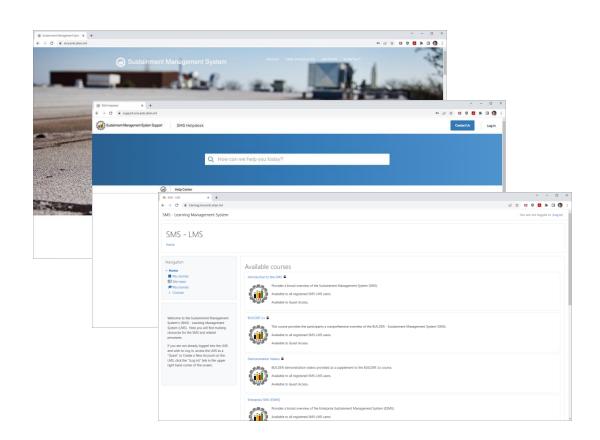
Plan



Forecast

Analyze

SMS INFORMATION RESOURCES


SMS General Information Website https://www.sms.erdc.dren.mil/

U.S. ARMY

SMS Support Site https://support.sms.erdc.dren.mil/

SMS Training Site – Learning Management System

https://training.sms.erdc.dren.mil/

MR. MARK SINDER - DASD-IMR

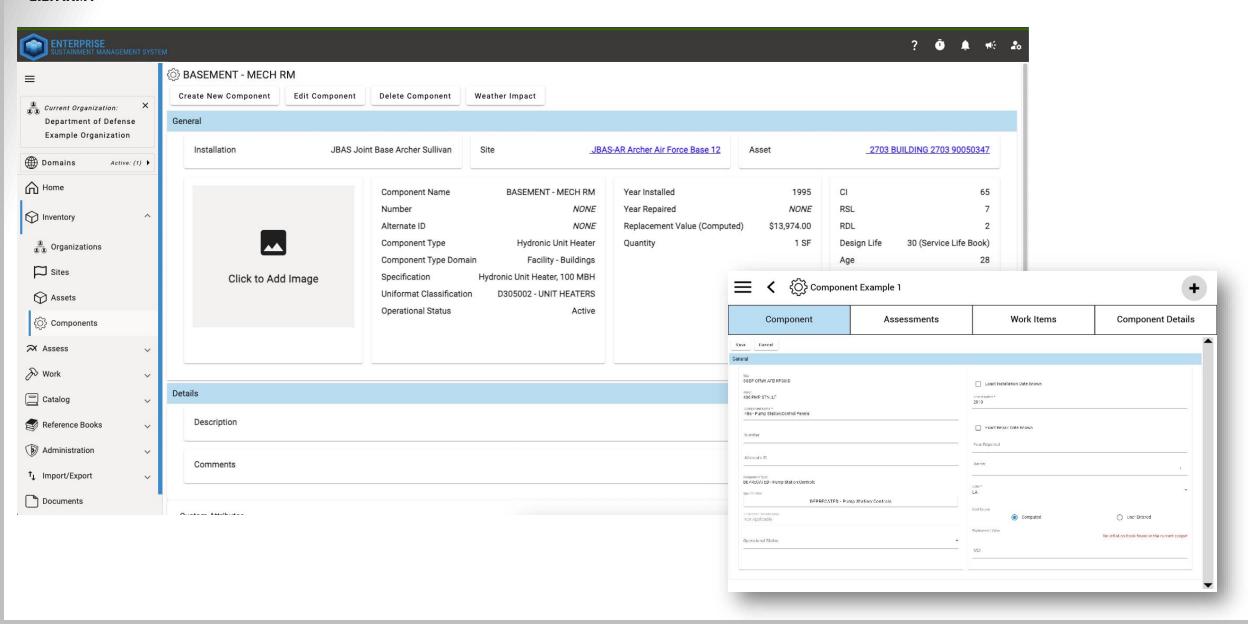
Mr. Sinder is currently serving as Deputy Assistant Secretary of Defense for Infrastructure Modernization and Resilience. In this role, he is charged with ensuring strategic alignment of DoD's physical infrastructure with warfighter requirements, to include development and execution of policies, guidance, and procedures for basing, real property management, geospatial information and services, and the construction, operations, maintenance and repair of DoD's worldwide infrastructure portfolio.

Prior to this assignment Mr. Sinder served as the Director, Installations Division (OPNAV N4I) under the Deputy, Chief of Naval Operations for Fleet Readiness and Logistics.

From 2020-2023, Mr. Sinder served as the Director of Operations (N3) for Commander, Navy Installations Command.

Prior to this appointment, from 2019-2020, Mr. Sinder served as the Executive Director for Naval District Washington (NDW).

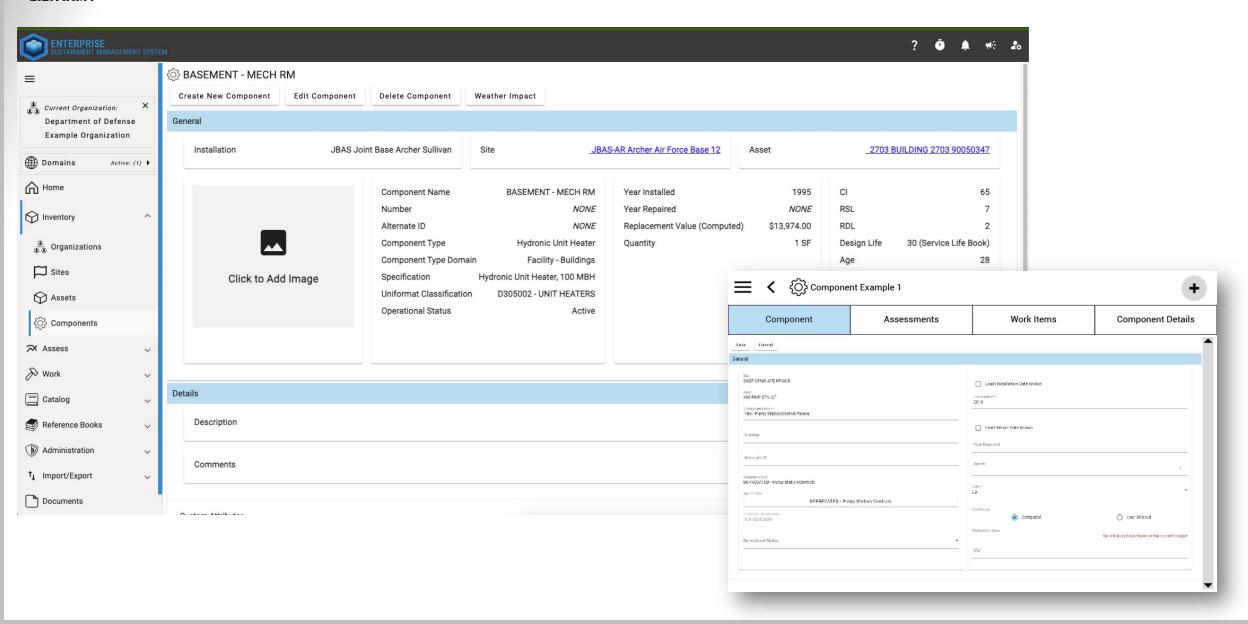
Mr. Sinder began working in the Department of Defense environment in 2003 in variety of positions principally on Chief of Naval Operations staff and for Commander, Navy Installations Command.


Mr. Sinder is a native of Champaign, IL and graduated from the College of William and Mary with a Bachelor of Arts in Economics and Political Science.

https://www.acq.osd.mil/eie/leadership/mark-sinder.html

DEMO OF E-SMS PART 1

U.S. ARMY


Resuming at **1:00 PM**Eastern Time

DEMO OF E-SMS PART 2

U.S. ARMY

ENTERPRISE SUSTAINMENT MANAGEMENT SYSTEM (ESMS)
UTILITIES DOMAIN UPDATE
USACE-ERDC-CERL
SMS – TCX
July 2025

UTILITIES SMS UPDATE

Update and Demonstration

FY25 Focus Areas Inventory

- Refining Utilities SMS Data Models
 - Continue to Harmonize with GIS via the SDSFIE
 - Sync terminology with GIS from each Service
 - Thanks to Dave Labranche and his Program Team
 - Needed to Ensure Utilities Data Alignment with:
 - ESMS System Architecture
 - Actual Data Sources for DoD Utilities
 - **Existing Cost Databases**
- Developing Capability to Populate ESMS Utilities Databases
 - ESMS Generalized Importer
 - Recognizes the fact that quite a bit of Utilities data exists, but the format is not standardized
 - Enables Large Scale Database Imports
 - » Complex logic for bulk import
 Current Focus has been for Initial Testing with USAF GIS data
 - Importer Will Also Interact with Other Data Sources various CMMSs, Navy Utilities Tools, (Flexible)
- Testing ESMS with Linear Asset Data
 Linear asset data tests ESMS geometry and map viewer
 Large GIS databases test the ESMS Generalized Importer

UTILITIES SMS UPDATE

FY25 Focus Areas Inventory (Continued)

- Specifications Development Needed
 - BUILDER has some similar components but very limited
 - Developing Spec's for all Component Types in all Utilities Domains
- Specifications Approach is to Keep It Simple
 - Limited Number of Components
 - Limited Number of required Attributes
 - Sufficient to Enable SMS Analysis, but not overdesigned
 - Note: Can keep extra info in "custom attributes", but won't be in ESMS Specs

۱۸	/at	er
v 1	ıαι	OI.

• Component Types: **16**

Electrical

• Component Types: **20**

Natural Gas

• Component Types: **12**

Stormwater

• Component Types: **20**

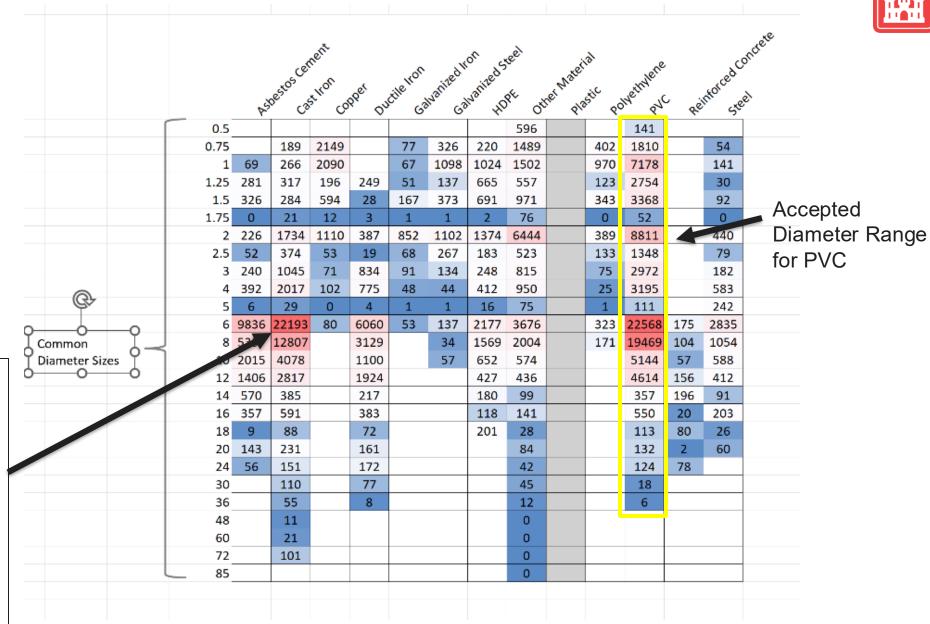
Thermal

• Component Types: **13**

Wastewater

• Component Types: **11**

SAMPLE FROM ESMS WATER PIPE SPECIFICATION


С	E	G	K	L	S	Т	U	V	W	X	
Component			Design	Terminal	Attribute 1	Attribute 1	Attribute 2	Attribute 2	Attribute 3	Attribute	: 3
Type	Default Unitformat	Specification	Life -	CI	Name	Value 🔻	Name 🕞	Value 🔻	Name 🔻	Value	~
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 2 in	60	40	Material	PVC	Diameter	2			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 2.5 in	60	40	Material	PVC	Diameter	2.5			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 3 in	60	40	Material	PVC	Diameter	3			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 4 in	60	40	Material	PVC	Diameter	4			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 5 in	60	40	Material	PVC	Diameter	5			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 6 in	60	40	Material	PVC	Diameter	6			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 8 in	60	40	Material	PVC	Diameter	8			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 10 in	60	40	Material	PVC	Diameter	10			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 12 in	60	40	Material	PVC	Diameter	12			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 14 in	60	40	Material	PVC	Diameter	14			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 16 in	60	40	Material	PVC	Diameter	16			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 18 in	60	40	Material	PVC	Diameter	18			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 20 in	60	40	Material	PVC	Diameter	20			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 24 in	60	40	Material	PVC	Diameter	24			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 30 in	60	40	Material	PVC	Diameter	30			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC, 36 in	60	40	Material	PVC	Diameter	36			
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, PVC	60	40	Material	PVC	Diameter				
Water Pipe	G301002 POTABLE WATER DISTRIBUTION	Water Pipe, Reinforced Concrete, 6 in	60	40	Material	Reinforced	Diameter	6			

Material and Diameter Heat Map for Water Pipes

Example:

There are 22,193 Pipes from GIS Layers
WMainLine_L and
WserviceLine_L which will map to the ESMS specification for "Water Pipe, Cast Iron, 6 Inch Diameter

UTILITIES SMS UPDATE

FY25 Focus Areas (Continued)

Assessment (Just Getting Started)

- Bulk Importer will Import Direct Rating-Type Assessments
 - **Ongoing Work**
 - Need to Harmonize/Standardize assessment methods
 - August Utilities Working Group Topic
 - Guidance will be developed as needed

UTILITIES SMS UPDATE

FY26 Focus Areas

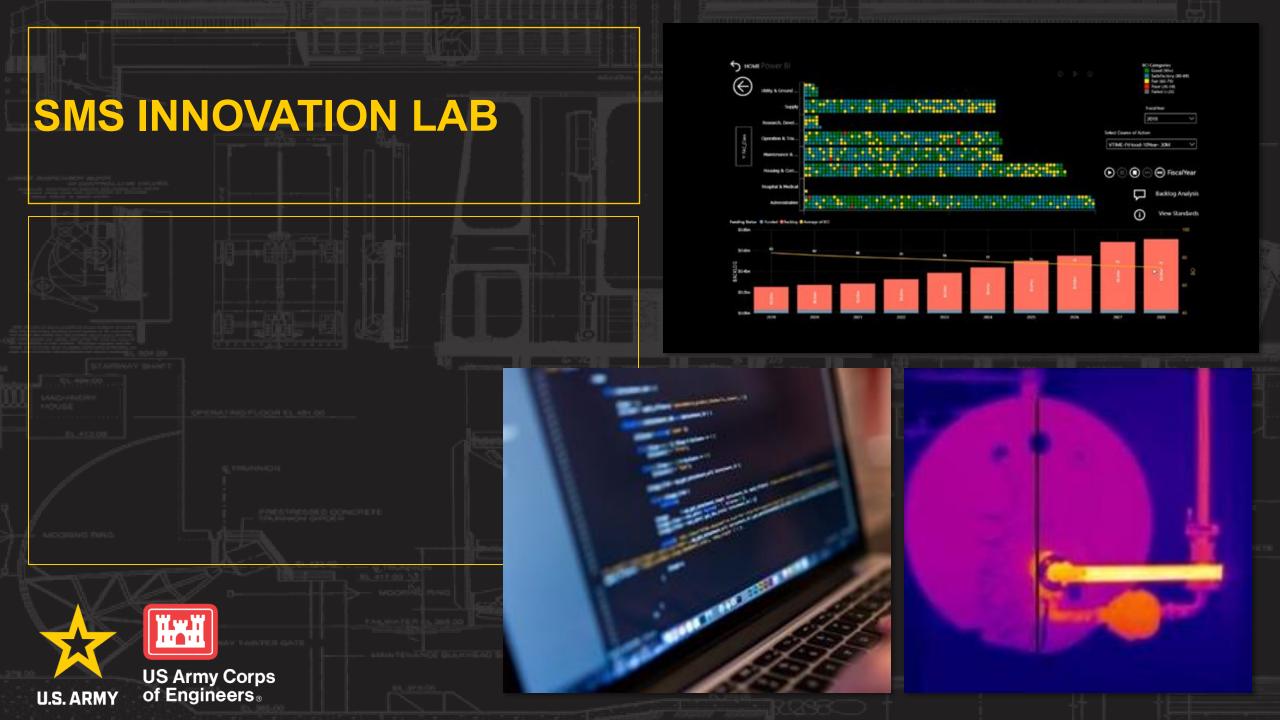
- Complete ESMS Specifications for All Utilities
- Configure Importer for Each Data Source For All Users
- **Develop Tools for Onboarding**
 - Data Gaps
 - QA/QC Reports
- Configure Work Analysis for Utilities
- **Develop Training Materials**

Thanks to the Team!

Dr. Mike Grussing, Mike Mollineaux, Ryan Smith, Ray Butler, Juan Davilla-Perez

Demonstration (Ryan Smith)

ENTERPRISE SUSTAINMENT MANAGEMENT U.S. ARMY SYSTEM (E-SMS) CONFIGURATION SUPPORT


Denise Faldowski E-SMS CSP Chair

Office of the Deputy Assistant Secretary of Defense for Infrastructure Modernization and Resilience (ODASD(IM&R))

Content covered by Jim Livingston (Army G9)

E-SMS HELP AND TRAINING CONTENT

Demonstrations of SMS Learning Management Site, ESMS Help Documentation, and SMS TCX Support Site

DISCOVERY: A CADRE OF RESEARCHERS

SMS LIFECYCLE

Discover

On-going work refining the art of asset management through algorithm and process development, data mining, and similar research efforts.

Develop

Taking new asset management practice discoveries and building tools that are leveraged by our industry partners.

Deliver

Provide Federal agencies assistance and guidance in the implementation of SMS tools and processes for maximum effectiveness.

Sustain

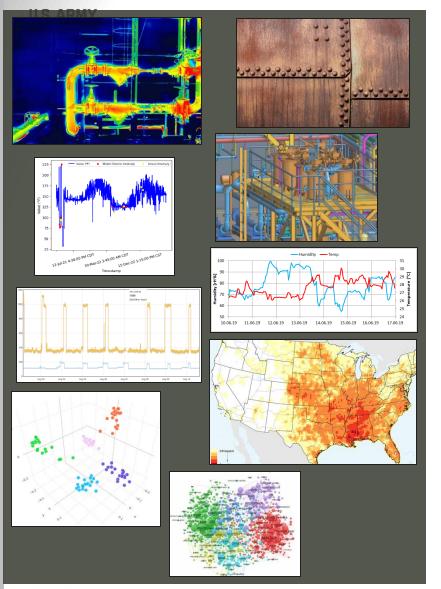
Application hosting, SMS Support helpdesk, and the various efforts required to provide SMS tools to Federal agencies.

Lawrence Berkeley National Laboratory

Matt Richards
Research IT Specialist
Data Mgt

Dr. Trevor BetzResearch Mechanical
Engineer

Brayden Riesberg
Data Scientist



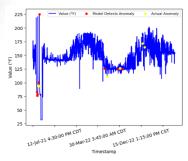

Bob Skudnig
Research
Mathematician

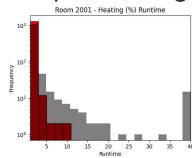
RESEARCH OVERVIEW

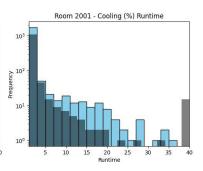
DATA IN

INFO OUT

DATA IN Improving data quality and reducing cost... **US Army Corps** of Engineers_® **U.S. ARMY**

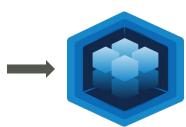


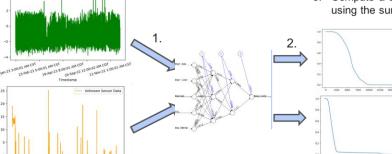

SENSOR INTEGRATION


U.S. ARMY

Anomaly Detection

- ML / neural network processing





Automated Condition Assessment

- 1. Input healthy and unknown sensor data into autoencoder neural network
- 2. Use neural network output to create survival functions for the healthy and unknown sensors
- 3. Compute a Condition Index for the unknown sensor using the survival functions

of Engineers® Development Center

Operations and Maintenance Engineering Technology

A Method Comparison of Algorithms for Predicting Equipment Condition Ratings in the Enterprise Sustainment Management System using Building Automation System Data

A Case Study at Tyndall AFB and the Engineering Research and Development

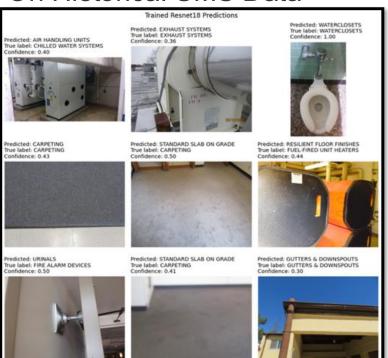
Matthew E. Richards, Louis Bartels, PhD., Michael Grussing, PhD., Trevor Betz, Joseph Wittrock, Sam March 2023

ROBOTIC INVENTORY AND CONDITION ASSESSMEN

ARTIFICIAL INTELLIGENCE ON THE EDGE

U.S. ARMY

Edge Computing



ringration of Australia and Manageres principal AMS with the Army hardware

Image Classification Trained On Historical SMS Data

Natural
Language
Request or
Assessment
from Sensors

Retrieval
Augmented
Generative Al

LLM MODEL RESPONSE

Condition Assessment of the Overhead Door Observations:

Structural Damage: Visible hole and rust on the upper section of the door indicate corrosion and material deterioration. Multiple dents, punctures, and physical damage on the lower panels compromise structural integrity.

structural integrity.

Surface Condition: The paint is peeling and uneven, exposing bare metal in places, which accelerates rust formation. Signs of long-term wear and neglect are evident.

Functional Concerns: The "DOOR BLOCKED" sign and the overall appearance suggest the door may not be operational. Warping or misalignment is possible, which could interfere with opening and closing. **Environmental Exposure:** Salt residue near the base of the door indicates exposure to road salt, contributing to accelerated corrosion. Cold weather conditions likely exacerbate wear through freeze-thaw cycles.

Condition Index (CI) Based on the BUILDER™ SMS framework for Condition Assessment:

Baseline Condition: A commercial overhead door typically has a service life of 20–30 years. Given the visible damage and lack of maintenance, this door is likely near or beyond its expected lifespan.

Condition Deductions:

Structural damage: -30 points.
Corrosion and rust: -20 points.
Paint failure and exposure: -10 points.
Possible non-operational status: -10 points.

Estimated CI: 30-40 (Poor condition)

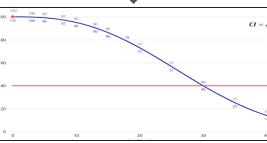
Recommendations

Immediate Repairs: If the door is required for security or operation, replace damaged panels and repaint to prevent further rust. Inspect mechanical components (tracks, springs, motor) for functionality.

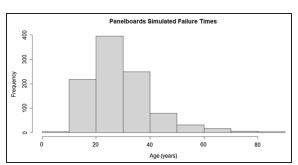
Replacement: Given the extent of damage, consider replacing the door entirely. A new door will likely be more cost-effective than extensive repairs.

Preventive Maintenance: Establish a regular maintenance schedule to clean, paint, and inspect the door to prevent future degradation.

INFORMATION OUT Enhancing data value for improved facility insights... US Army Corps of Engineers®



FAILURE PROBABILITY

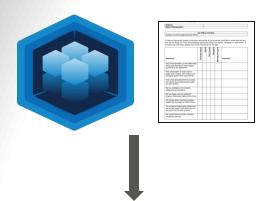


SMS Condition

$$CI(t) = A * \left(\frac{100}{CI_T}\right)^{-\left(\frac{t}{\theta}\right)^{\beta}}$$

Existing Reliability
Estimation

Failure Likelihood


$$f(t) = \frac{-dCI(t)}{dt} = \frac{A\beta \left(\frac{100}{CI_T}\right)^{-\left(\frac{t}{\theta}\right)^{\beta}} \left(\frac{t}{\theta}\right)^{\beta} \ln\left(\frac{100}{CI_T}\right)}{100 * t}$$

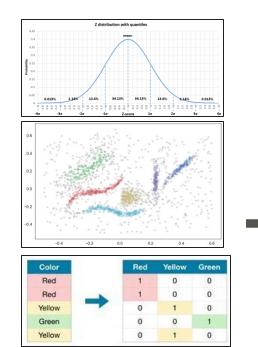
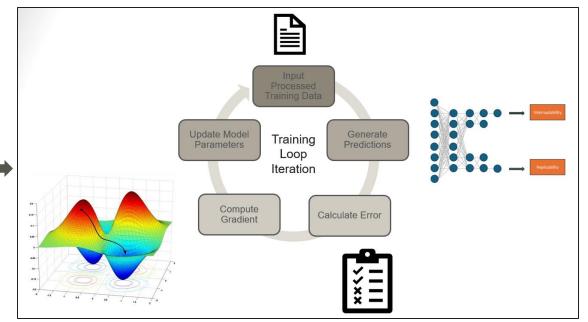
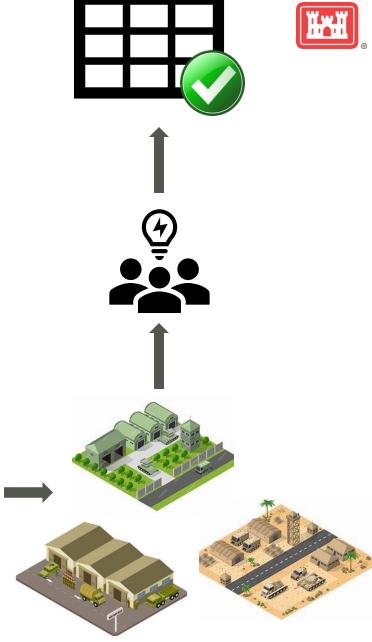

		Panelboards Failure Model vs. Simulated Failures Theoretical Densities vs. Failure Age Distribution
	0.04 -	
	0.03-	
Density	0.02 -	
	0.01-	
	0.00-	
		0 25 50 75 Time at Failure (Years)

Table 4. MSE values of degradation models						
Component	Neural network	Industry				
Panelboards	105.06	826.29				
Low-slope roof systems	55.37	3,565.58				

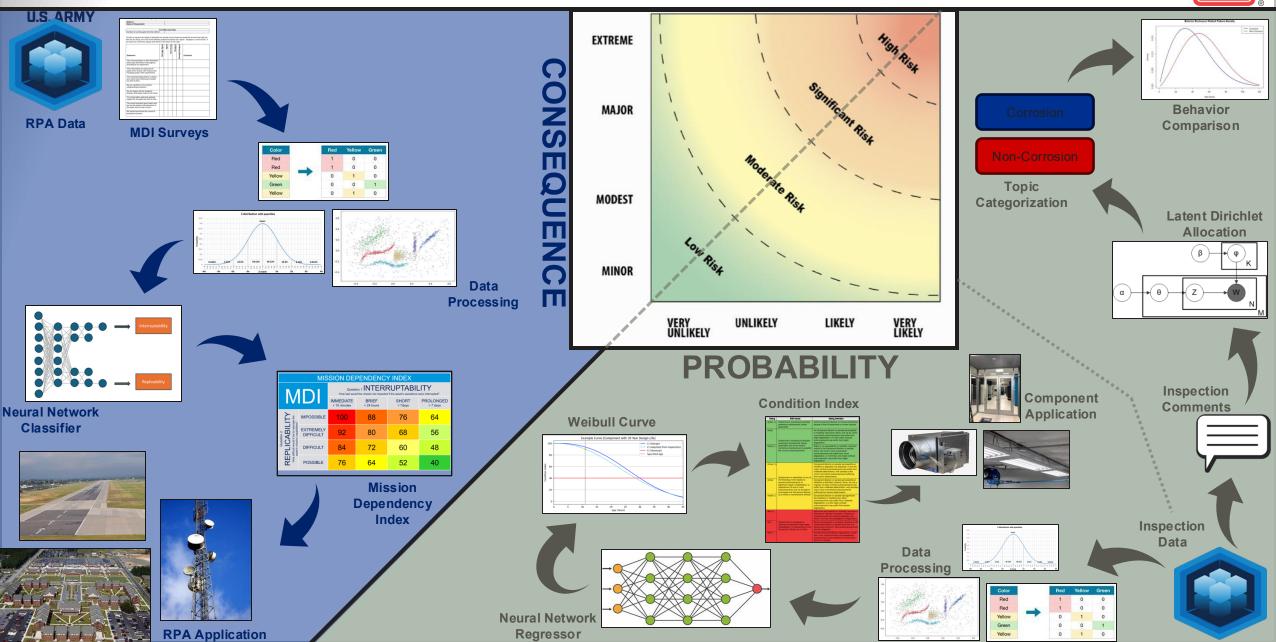
FAILURE CONSEQUENCE


U.S. ARMY



How can we improve and standardize the Mission Dependency Index?

	MIS	SION DE	PENDENC'	Y INDEX	
N/	וחו			RUPTABIL d if the asset's operations of	
IV	IDI	IMMEDIATE < 15 minutes	BRIEF < 24 hours	SHORT < 7days	PROLONGED > 7 days
.IT≺	IMPOSSIBLE	100	88	76	64
CABILITY CABILITY Could it be to relocate the relission capabilities?	EXTREMELY DIFFICULT	92	80	68	56
REPLIC How difficult would asset's missic	DIFFICULT	84	72	60	48
A PER	POSSIBLE	76	64	52	40



*

RISK ESTIMATION

U.S. ARMY

Maintenance Plan 1

Comp.	1	2	3	4	5	6	7	8	9	10
FCU		Repair			Repair					
Slab								Repl.		
Wall		Repair								
Door			Repair					Repair		
Generator					Repair					

Outcome:

\$80k

FCI: 87

Facility A

Maintenance Plan 2

	Comp.	1	2	3	4	5	6	7	8	9	10
, [FCU					Repair					
	Slab										
	Wall		Repair								
	Door								Repair		
	Generator					Repair					

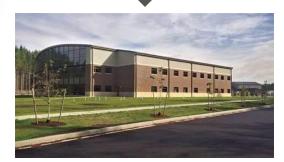
\$30k

FCI: 65

Maintenance Plan 3

Comp.	1	2	3	4	5	6	7	8	9	10
FCU		Repair			Repair					
Slab								Repl.		
Wall		Repair								
Door			Repair					Repl.		
Generator								Repl.		

\$200k


FCI: 94

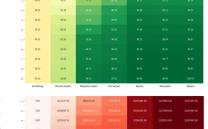
All Single-Decision Plans

Facility A

Optimization Methodology

-	35.23	37.14	52.47	64.54	93.15	93.15	93.15
2 -	35.23	44.25	59.21	77.50	95.09	95.09	95.09
m -	35.23	51.04	76.37	81.90	96.68	96.68	96.68
4 -	35.23	52.35	79.28	88.87	97.93	97.93	97.93
ъ -	35.23	68.33	86.03	94.07	98.84	98.84	98.84
- و	35.23	69.33	89.27	95.36	99.45	99.45	99.45
7 -	35.23	70.75	90.82	96.35	99.81	99.81	99.81
ю -	35.23	71.22	97.08	98.68	99.97	99.97	99.97
თ -	35.23	71.57	97.64	98.91	100.00	100.00	100.00
	Do Nothing	Minimal Sustain	Moderate Sustain	Full Sustain	Restore	Renovation	Replace
-	0.00	0.00	7646.11	10892.60	92802.88	92802.88	92802.88
- 2	0.00	1919.62	13019.40	16705 22			
m -			15015.40	16785.33	92802.88	92802.88	92802.88
	0.00	9506.88	20982.42	28318.35	92802.88 92802.88	92802.88 92802.88	92802.88 92802.88
4 -	0.00	9506.88 15127.80					
4 -			20982.42	28318.35	92802.88	92802.88	92802.88
	0.00	15127.80	20982.42 32953.53	28318.35 36560.31	92802.88 92802.88	92802.88 92802.88	92802.88 92802.88
ιn -	0.00	15127.80 18364.22	20982.42 32953.53 39803.42	28318.35 36560.31 48035.75	92802.88 92802.88 92802.88	92802.88 92802.88 92802.88	92802.88 92802.88 92802.88
s - 9 -	0.00 0.00 0.00	15127.80 18364.22 32218.98	20982.42 32953.53 39803.42 50735.11	28318.35 36560.31 48035.75 58875.21	92802.88 92802.88 92802.88 92802.88	92802.88 92802.88 92802.88 92802.88	92802.88 92802.88 92802.88 92802.88
7 6 5	0.00 0.00 0.00	15127.80 18364.22 32218.98 35354.29	20982.42 32953.53 39803.42 50735.11 57480.15	28318.35 36560.31 48035.75 58875.21 61195.86	92802.88 92802.88 92802.88 92802.88	92802.88 92802.88 92802.88 92802.88	92802.88 92802.88 92802.88 92802.88

Sample Installation



	35.23	35.23	52.47	64.54	93.15		
~ -	35.23	35.23	59.21	77.50	95.09		
-	35.23	35.23	76.37				
	35.23	35 23	79.28				
wa -	35.23	35.23					
	35.23	35.23					
h :	35.23	35.23	90.82				
	35.23	35.23	97.08				
e -	35.23	35.23	97.64				
	35.23 Do Nothing	35.23 Minimal Sustain	97.64 Moderate Sustain	96.91 Full Sustain	200 00 Restore	100.00 Renovation	100.00 Replace
e.							
	Do Nothing	Minimal Sustain	Moderate Sustain	Pull Sustain	Restore	Renovation	Replace
	Do Nothing 0.00	Minimal Sustain	Moderate Sustain 7646.11	Pull Sustain 20892-60	Restore 92602.88	Renovation 92862.88	Replace 92802.88
	Do Nothing 0.00 0.00	Minimal Sustain 6 00 3929 62	Moderate Sustain 7646.11 13019.40	Full Sustain 30892-60 36785-33	Pastore 10802 88 10802 88	Renovation 90802.88 90802.88	Replace 92502 88 92502 88
2 2 1	0.00 0.00 0.00	Minimal Sustain 6 00 3929 62 9506.88	Moderate Sustain 7646 11 13019 40 29982 42	Full Sustain 30892 60 36785.33 28318.35	Sestore 92502.88 92502.88 92502.88	Renovation 92802.88 50802.88 92802.88	Replace 92802 88 92802 88 92802 88

~	29.54	40.61	67.89	69.51	53.89		
	29.54	40.90	75.80	7433	95.73		
	29.54	52.56	36.67	79.10			
w.	29.54	53.94					
	29.54	55.38	B.M				
	29.54	58.55	89.04				
	29.54	62.41	25.43				
	39.54	64.31	97.92				
	Do Nothing	Minimal Sustain	Moderate Sustain	Full Sustain	Restore	Renovation	Replace
	0.00	9832.76	200000.41	412729.39	1197716.25	1197716.75	1216392 00
~	0.00	135402.25	473017.41		1198840.75		
_	2.00	200777.05			70000000	YORKS DO.	

м.	49.59	49.59	58.97	63.36	78.19	72.15	72.15
~ -	49.59	49.77	63.36	75.72		79.10	79.10
м.	49.59	49.79	76.47	78.63	92.25		
	49.59	51.16	70.09				
w.	49.59	54.54	ID 15				
	49.59	54.96	93.43				
	49.59	55.62	95.50				
	49.59	56.24	98.96				
	49.59	56.24	99.21				
	Do Nothing	Minimal Sustain	Moderate Sustain	Full Sustain	Restore	Renovation	Replace
	0.00	404.00	2000 TA	64470.70	1000000	200706.07	MATERIAL .

	Do Nothing	Minimal Sustain	Moderate Sustain	Pull Sustain	Restore	Renovation	Replace
٥.	0.00	32172.51	187379.91				
	0.00	12172.51	182710 97				
	0.00	32172.51	179794.86				
	0.00	26359.24	387794.94				
wh r	0.00	20580.85	157740.17				
4.	0.00	15843.91	129096.49				
n :	0.00	4988.23	204284.57	114165.27			
~ -	0.00	545.69	97766.03	100288-00	212097.81		
м.	0.00	404.25	69469.10	94470.29			

Linear Programming

> 10-Year Maintenance Plan

Methods Investigated

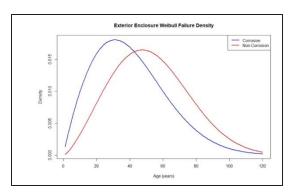
1. Genetic Algorithm

- Based on natural selection / evolution
- "Mutates" repair plans, selecting the one with highest "fitness"

- Runs many trials to get a "reward" value for potential actions
- Incorporates Markov models for uncertainty

3. Linear Programming

- Evaluates cost/impact of repair plans
- Select set of plans to give portfolio highest impact within budget


U.S. ARMY

HOW CAN SMS DATA HELP WITH YOUR PROBLEM?

Examples

- Corrosion: Can SMS data help quantify facility corrosion risk?
 - Natural language processing of inspection text
 - Identifies corrosion-prone components
 - Compares reliability to similar non-corrosion components
- Energy: Can SMS data help estimate energy use intensity when sub-metering isn't available?
 - Develop facility features like HVAC capacity, complexity
 - Integrated into larger machine-learning models
- Mold: Can SMS help identify facilities at greater risk of mold?
 - Natural language processing of inspection text as risk
 - Develop facility features like est. air-change capacity
 - Integrated into larger machine-learning models

THANK YOU!