
ACI Committee 201. 2016. ACI 201.2R-16: Guide to Durable Concrete. American Concrete Institute.
Ahmed, Z. T., and D. W. Hand. 2015. Direct Adsorption Isotherms of AEAs and Coal Ash: α-Olefin Sulfonate and Combination Admixtures. ACS Sustainable Chemistry & Engineering 3, no. 2: pp. 216–223.
Ahmed, Z. T., D. W. Hand, L. L. Sutter, and M. K. Watkins. 2014a. Coal Ash Iodine Number for Measuring Adsorption Capacity of Coal Fly Ash. ACI Materials Journal 111, no. 4: pp. 383–390.
Ahmed, Z. T., D. W. Hand, L. L. Sutter, and M. K. Watkins. 2014b. Combined Adsorption Isotherms for Measuring the Adsorption Capacity of Coal Ash in Concrete. Sustainable Chemistry and Engineering 2, no. 4: pp. 614–620.
Al-Shmaisani, S., R. Kalina, M. Rung, R. Ferron, and M. Juenger. 2018. Implementation of a Testing Protocol for Approving Alternative Supplementary Cementitious Materials (SCMs): Natural Minerals and Reclaimed and Remediated Fly Ashes. FHWA/TX-18/5-6717-01-1. TxDOT, Austin.
Ankur, N., and N. Singh. 2021. Performance of Cement Mortars and Concretes Containing Coal Bottom Ash: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 149: article 111361.
Anzalone, G. C., I. Diaz-Loya, R. Y. Minkara, and L. L. Sutter. 2019. Comparison of Methods to Measure Adsorptive Capacity of Coal Fly Ash. ACI Materials Journal 116, no. 4: pp. 107–112.
Atkin, R., V. S. Craig, E. J. Wanless, and S. Biggs. 2003. Mechanism of Cationic Surfactant Adsorption at the Solid–Aqueous Interface. Advances in Colloid and Interface Science 103, no. 3: pp. 219–304.
Aughenbaugh, K. L., R. T. Chancey, P. Stutzman, M. C. Juenger, and D. W. Fowler. 2013. An Examination of the Reactivity of Coal Ash in Cementitious Pore Solutions. Materials and Structures 46, no. 5: pp. 869–880.
Avet, F., R. Snellings, A. A. Diaz, M. B. Haha, and K. Scrivener. 2016. Development of a New Rapid, Relevant and Reliable (R3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays. Cement and Concrete Research 85, no. 1: pp. 1–11.
Baltrus, J. P., and R. B. LaCount. 2001. Measurement of Adsorption of Air-Entraining Admixture on Coal Ash in Concrete and Cement. Cement and Concrete Research 31, no. 5: pp. 819–824.
Barger, G. S. 1985. A Fusion Method for the X-Ray Fluorescence Analysis of Portland Cements, Clinker and Raw Materials Utilizing Cerium (IV) Oxide in Lithium Borate Fluxes. Advances in X-ray Analysis 29: pp. 581–585.
Baviere, M., B. Bazin, and R. Aude. 1983. Calcium Effect on the Solubility of Sodium Dodecyl Sulfate in Sodium Chloride Solutions. Journal of Colloid and Interface Science 92, no. 2: pp. 580–583.
Bentz, D., A. Duran-Herrara, and D. Galvez-Moreno. 2011. Comparison of ASTM C311 Strength Activity Index Testing Versus Testing Based on Constant Volumetric Proportions. Journal of ASTM International 9, no. 1: pp. 1–7.
Blanco, F., M. P. Garcia, and J. Ayala. 2005. Variation in Coal Ash Properties with Milling and Acid Leaching. Fuel 84, no. 1: pp. 89–96.
Brown, P. W., E. Franz, G. Frohnsdorff, and H. F. W. Taylor. 1984. Analyses of the Aqueous Phase during Early C3S Hydration. Cement and Concrete Research 14, no. 2: pp. 257–262.
Bruere, G. M. 1955. Air Entrainment in Cement and Silica Pastes. ACI Journal Proceedings 51, no. 5: pp. 905–919.
Chancey, R. T., P. Stutzman, M. C. Juenger, and D. W. Fowler. 2010. Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Coal Ash. Cement and Concrete Research 40, no. 1: pp. 146–156.
Cheerarot, R., and C. Jaturapitakkul. 2004. A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management 24, no. 7: pp. 701–709.
Chang, Z., X. Chen, and Y. Peng. 2018. The Adsorption Behavior of Surfactants on Mineral Surfaces in the Presence of Electrolytes—A Critical Review. Minerals Engineering 121: pp. 66–76.
Chen, X., M. Farber, Y. Gao, I. Kulaots, E. M. Suuberg, and R. H. Hurt. Mechanisms of Surfactant Adsorption on Non-Polar, Air-Oxidized and Ozone-Treated Carbon Surfaces. 2003. Carbon 41, no. 8: pp. 1489–1500. https://doi.org/10.1016/S0008-6223(03)00053-8.
Chen, Q., J. X. Wang, F. Yang, D. Zhou, N. Bian, X.J. Zhang, C.G. Yan, and B.H. Han. 2011. “Tetraphenylethylene-Based Fluorescent Porous Organic Polymers: Preparation, Gas Sorption Properties and Photoluminescence Properties.” Journal of Materials Chemistry 21, no. 35: pp. 13554–13560.
Chopperla, K. S. T., and Ideker, J. H. 2022. Using Electrical Resistivity to Determine the Efficiency of Supplementary Cementitious Materials to Prevent Alkali-Silica Reaction in Concrete. Cement and Concrete Composites 125: article 104282.
Cook, M. D., A., Ghaeezadah, and M. T. Ley. 2018. Impacts of Coarse-Aggregate Gradation on the Workability of Slip-Formed Concrete. JournalofMaterialsinCivilEngineering30, no. 2. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002126.
DeCarolis, J., and A. LaRose. 2023. Annual Energy Outlook 2023. U.S. Energy Information Administration. https://www.eia.gov/outlooks/aeo/pdf/AEO2023_Release_Presentation.pdf.
Demissie, H., and R. Duraisamy. 2016. Effects of Electrolytes on the Surface and Micellar Characteristics of Sodium Dodecyl Sulphate Surfactant Solution. Journal of Scientific and Innovative Research 5, no. 6: pp. 208–214.
Deschner, F., F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, and J. Neubauer. 2012. Hydration of Portland Cement with High Replacement by Siliceous Coal Ash. Cement and Concrete Research 42, no. 10: pp. 1389–1400.
Diaz-Loya, I., M. C. Juenger, S. Seraj, and R. Minkara. 2019. Reclaimed and Remediated Coal Ash and Natural Pozzolans. Cement and Concrete Composites 101, no. 1: pp. 44–51.
Dunstan, E. R. 2019. An Enhanced Procedure to Measure Strength and Durability of Pozzolans. ACI Journal Proceedings 116, no. 4: pp. 183–192.
Dunstan, E. R. 2017. “What is a ‘Practical’ (ASTM C618) SAI—Strength Activity Index for Fly Ashes that Can Be Used to Proportion Concretes Containing Fly Ash?” In World of Coal Ash Conference Proceedings, vol. 83, pp.1–25. Lexington, KY.
Durdziński, P. T., C. F. Dunant, M. B. Haha, and K. Scrivener. 2015. A New Quantification Method Based on SEM-EDS to Assess Coal Ash Composition and Study the Reaction of Its Individual Components in Hydrating Cement Paste. Cement and Concrete Research 73, no. 1: pp. 111–112.
Durdziński, P. T., R. Snellings, C. F. Dunant, M. B. Haha, and K. L. Scrivener. 2015. Coal Ash as an Assemblage of Model Ca–Mg–Na-Aluminosilicate Glasses. Cement and Concrete Research 78(Part B): pp. 263–272.
Fan, M., and R. C. Brown. 2001. Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash. Energy Fuels 15, no. 6: pp. 1414–1417.
Fox, J. M. 2005. “Changes in Coal Ash with Thermal Treatment.” In World of Coal Ash Conference Proceedings, pp. 132–146. Lexington, KY.
Gang, P., M. Dong, J. Yu, and J. Lu. 2017. Accuracy Improvement of Quantitative Analysis of Unburned Carbon Content in Coal Ash Using Laser Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 131, no. 1: pp. 26–31.
Gebler, S., and P. Klieger. 1983. Effect of Coal Ash on the Air-Void Stability of Concrete. ACI Special Publication 79: pp. 103–142.
Giergiczny, Z. 2019. Coal Ash and Slag. Cement and Concrete Research 124: article 105826.
Glosser, D., P. Suraneni, O. B. Isgor, and W. J. Weiss. 2021. Using Glass Content to Determine the Reactivity of Coal Ash for Thermodynamic Calculations. Cement and Concrete Composites 115: article 103849.
Harris, N. J., K. C. Hover, K. J. Folliard, and M. T. Ley. 2008a. The Use of the Foam Index Test to Predict Air-Entraining Admixture Dosage in Concrete Containing Coal Ash: Part I—Evaluation of the State of Practice. Journal of ASTM International 5, no. 7: pp. 1–15.
Harris, N. J., K. C. Hover, K. J. Folliard, and M. T. Ley. 2008b. The Use of the Foam Index Test to Predict Air-Entraining Admixture Dosage in Concrete Containing Fly Ash: Part III—Development of a Standard Test Method: Proportions of Materials. Journal of ASTM International 5, no. 7: pp. 1–15.
Hassett, D. J., and K. E. Eylands. 1999. Mercury Capture on Coal Combustion Coal Ash. Fuel 78, no. 2: pp. 243–248.
Haustein, E., and A. Kuryłowicz-Cudowska. 2022. Effect of Particle Size of Fly Ash Microspheres (FAMs) on the Selected Properties of Concrete. Minerals 12, no. 7: article 847.
Hemalatha, T., and A. Ramaswamy. 2017. A Review on Fly Ash Characteristics—Towards Promoting High Volume Utilization in Developing Sustainable Concrete. Journal of Cleaner Production 147, no. 1: pp. 546–559.
Hill, R. L., S. L. Sarkar, R. F. Rathbone, and J. C. Hower. 1997. An Examination of Fly Ash Carbon and its Interactions with Air Entraining Agent. Cement and Concrete Research 27, no. 2: pp. 193–204. https://doi.org/10.1016/S0008-8846(97)00008-2.
Hooton, R. D., and J. J. Emery. 1983. “Glass Content Determination and Strength Development Predictions for Vitrified Blast Furnace Slag.” In American Concrete Institute Special Publication 79, pp. 943–962.
Hooton, R. D., and M. D. Thomas. 2023. Introducing Harvested Coal Ash to ASTM C618. Concrete InFocus spring 2023: pp. 28–35.
Hower, J. C., R. F. Rathbone, J. D. Robertson, G. Peterseon, and A. S. Trimblea. 1999. Petrology, Mineralogy, and Chemistry of Magnetically-Separated Sized Fly Ash. Fuel 78, no. 2: pp. 197–203.
Hu, Q., M. T. Ley, J. Davis, J. C. Hanan, R. Frazier, and Y. Zhang. 2014. 3D Chemical Segmentation of Coal Ash Particles with X-Ray Computed Tomography and Electron Probe Microanalysis. Fuel 116: pp. 229–236.
Huang, H., Q. Yuan, D. Deng, J. Peng, and Y. Huang. 2019. Effects of Chemical and Mineral Admixtures on the Foam Indexes of Cement-Based Materials. Case Studies in Construction Materials 11: e00232.
Innocenti, G., D. J. Benkeser, J. E. Dase, X. Wirth, C. Sievers, and K. E. Kurtis. 2021. Beneficiation of Ponded Coal Ash through Chemi-Mechanical Grinding. Fuel 299: article 120892.
Jones, J. R., and L. L. Hench. 2003. Effect of Surfactant Concentration and Composition on the Structure and Properties of Sol-Gel-Derived Bioactive Glass Foam Scaffolds for Tissue Engineering. Journal of Materials Science 38: pp. 3783–3790.
Jun-Yuan, H., B. E. Scheetz, and D. M. Roy. 1984. Hydration of Fly Ash-Portland Cements. Cement and Concrete Research 14, no. 4: pp. 505–512.
Kalina, R. D., S. Al-Shmaisani, R. D. Ferron, and M. C. Juenger. 2019. False Positives in ASTM C618 Specifications for Natural Pozzolans. ACI Materials Journal 116, no. 1: pp. 165–172.
Kang, S., L. Emerson, J. Lee, and M. T. Ley. 2023. Determining the Air-Entraining Admixture Dosage in Concrete with Non-Traditional Coal Ash. Materials and Structures 56, no. 1: article 9.
Kang, S., M. T. Ley, and A. Behravan. 2021. Predicting Ion Diffusion in Fly Ash Cement Paste through Particle Analysis. Construction and Building Materials 272: article 121934.
Kang, S., Z. Lloyd, A. Behravan, and M. T. Ley. 2021. The Relationship between the Apparent Diffusion Coefficient and Surface Electrical Resistivity of Fly Ash Concrete. Construction and Building Materials 299: article 123964.
Kang, S., Z. Lloyd, T. Kim, and M. T. Ley. 2020. Predicting the Compressive Strength of Fly Ash Concrete with the Particle Model. Cement and Concrete Research 137: article 106218.
Kasaniya, M., M. D. Thomas, and E. G. Moffatt. 2021. Efficiency of Natural Pozzolans, Ground Glasses and Coal Bottom Ashes in Mitigating Sulfate Attack and Alkali-Silica Reaction. Cement and Concrete Research 149: article 106551.
Ke, G., J. Zhang, B. Tian, and J. Wang. 2020. Characteristic Analysis of Concrete Air Entraining Agents in Different Media. Cement and Concrete Research 135: article 106142.
Keil, F. 1952. “Slag Cement.” In Proceedings of the 3rd International Symposium on the Chemistry of Cement, pp. 530–571. Cement and Concrete Association, London, UK.
Khayat, K. H., and J. Assaad. 2002. Air-Void Stability in Self-Consolidating Concrete. ACI Materials Journal 99: pp. 408–416.
Kim, T., J. M. Davis, M. T. Ley, S. Kang, and P. Amrollahi. 2018. Coal Ash Particle Characterization for Predicting Concrete Compressive Strength. Construction and Building Materials 165, no. 1: pp. 560–571.
Kim, T., M. T. Ley, S. Kang, J. M. Davis, S. Kim, and P. Amrollahi. 2020. Using Particle Composition of Coal Ash to Predict Concrete Strength and Electrical Resistivity. Cement and Concrete Composites 107: article 103493.
Kondraivendhan, B., and B. Bhattacharjee. 2015. Flow Behavior and Strength for Coal Ash Blended Cement Paste and Mortar. International Journal of Sustainable Built Environment 4, no. 2: pp. 270–277.
Kruger, R. A. 1997. Coal Ash Beneficiation in South Africa: Creating New Opportunities in the Market-place. Fuel 76, no. 8: pp. 777–779.
Kucharczyk, S., M. Zajac, C. Stabler, R. M. Thomsen, M. B. Haha, and J. Deja. 2019. Structure and Reactivity of Synthetic CaO-Al2O3-SiO2 Glasses. Cement and Concrete Research 120, no. 1: pp. 77–91.
Külaots, I., A. Hsu, R. H. Hurt, and E. M. Suuberg. 2003. Adsorption of Surfactants on Unburned Carbon in Coal Ash and Development of a Standardized Foam Index Test. Cement and Concrete Research 33, no. 12: pp. 2091–2099.
Külaots, I., R. H. Hurt, and E. M. Suuberg. 2004. Size Distribution of Unburned Carbon in Coal Fly Ash and its Implications. Fuel 83, no. 2: pp. 223–230.
Kumar, R., S. Kumar, and S. P. Mehrotra. 2007. Towards Sustainable Solutions for Coal Ash through Mechanical Activation. Resources, Conservation and Recycling 52, no. 2: pp. 157–179.
Lea, F. M. 1970. The Chemistry of Cement and Concrete. 3rd ed. London: Edward Arnold Ltd.
Ley, M. T., R. Chancey, M. C. G. Juenger, and K. J. Folliard. 2009. The Physical and Chemical Characteristics of the Shell of Air-Entrained Bubbles in Cement Paste. Cement and Concrete Research 39, no. 5: pp. 417–425.
Ley, M. T., N. J. Harris, K. J. Folliard, and K. C. Hover. 2008. Investigation of Air-Entraining Admixture Dosage in Fly Ash Concrete. ACI Materials Journal 105, no. 5: pp. 494–498.
Li, X., R. Snellings, M. Antoni, N. M. Alderete, M. B. Haha, M. Bishnoi, Ö. Cizer, M. Cyr, K. De Weerdt, Y. Dhandapani, J. Duchesne, J. Haufe, D. Hooton, M. Juenger, S. Kamali-Bernard, S. Kramar, M. Marroccoli, A. M. Joseph, A. Parashar, C. Patapy, J. L. Provis, S. Sabio, M. Santhanam, L. Steger, T. Sui, A. Telesca, A. Vollpracht, F. Vargas, B. Walkley, F. Winnefeld, G. Ye, M. Zajac, S. Zhang, and K. L. Scrivener. 2018. Reactivity Tests for Supplementary Cementitious Materials: RILEM TC 267-TRM Phase 1. Materials and Structures 51, no. 6: article 151.
Lianos, P., and R. Zana. 1981. Fluorescence Probe Studies of the Effect of Concentration on the State of Aggregation of Surfactants in Aqueous Solution. Journal of Colloid and Interface Science 84, no. 1: pp. 100–107.
Liu., H., T. Houzhang, G. Qiang, W. Xuebin, and X. Tongmo. 2010. Microwave Attenuation Characteristics of Unburned Carbon in Coal Ash. Fuel 89, no. 11: pp. 3352–3357.
Liu, M., S. Panda, P. Suraneni, and L. R. Pestana. 2023. Insights from Molecular Dynamics into the Chemistry-Structure Relationships of Calcium Aluminosilicate Glasses. Journal of Non-Crystalline Solids 618: article 122545.
Mardon, S. M., and J. C. Hower. 2004. Impact of Coal Properties on Coal Combustion By-Product Quality: Examples from a Kentucky Power Plant. International Journal of Coal Geology 59, no. 3–4: pp. 153–169.
Maroto-Valer, M. M., D. N. Taulbee, and J. C. Hower. 2001. Characterization of Differing Forms of Unburned Carbon Present in Coal Ash Separated by Density Gradient Centrifugation. Fuel 80, no. 6: pp. 795–800.
Mastalerz, M., J. C. Hower, A. Drobniak, S. M. Mardon, and G. Lis. 2004. From In-Situ Coal to Coal Ash: A Study of Coal Mines and Power Plants from Indiana. International Journal of Coal Geology 59, no. 3–4, pp. 171–192.
Matheson, K. L., M. F. Cox, and D. L. Smith. 1985. Interactions between Linear Alkylbenzene Sulfonates and Water Hardness Ions. I. Effect of Calcium Ion on Surfactant Solubility and Implications for Detergency Performance. Journal of the American Oil Chemists’ Society 62, no. 9: pp. 1391–1396.
McCarthy, M. J., M. R. Jones, L. Zheng, T. L. Robl, and J. G. Groppo. 2013. Characterising Long-Term Wet-Stored Coal Ash Following Carbon and Particle Size Separation. Fuel 111, no. 1: pp. 430–441.
McCarthy, M. J., T. Robl, and L. J. Csetenyi. 2017. “Recovery, Processing, and Usage of Wet-Stored Coal Ash.” In Coal Combustion Products (CCPs): Characteristics, Utilization and Beneficiation, ed. T. Robl, A. Oberlink, and R. Jones, pp. 343–367. Cambridge: Woodhead Publishing.
McCarthy, M. J., L. Zheng, R. K. Dhir, and G. Tella. 2018. Dry-Processing of Long-Term Wet-Stored Coal Ash for Use as an Addition in Concrete. Cement and Concrete Research 92, no. 1: pp. 205–215.
Mehta, P. K. 1985. Influence of Coal Ash Characteristics on the Strength of Portland-Coal Ash Mixtures. Cement and Concrete Research 15, no. 4: pp. 669–674.
Moghaddam, F., V. Sirivivatnanon, and K. Vessalas. 2019. The Effect of Fly Ash Fineness on Heat of Hydration, Microstructure, Flow and Compressive Strength of Blended Cement Pastes. Case Studies in Construction Materials 10 (June 2019): article e00218.
Mohebbi, M., F. Rajabipour, and E. B. Scheetz. 2015. “Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Coal Ash.” In World of Coal Ash Conference Proceedings, pp. 5–7. Lexington, KY.
Nadelman, E. I., and K. E. Kurtis. 2014. A Resistivity-Based Approach to Optimizing Concrete Performance. Concrete International 36, no. 5: pp. 50–54.
Narmluk, M., and T. Nawa. 2011. Effect of Coal Ash on the Kinetics of Portland Cement Hydration at Different Curing Temperatures. Cement and Concrete Research 41, no. 6: pp. 579–589.
Neto, J. D. S. A., G. Angeles, and A. P. Kirchheim. 2021. Effects of Sulfates on the Hydration of Portland Cement—A Review. Construction and Building Materials 279: article 122428.
Obla., K. H. 2014. Improving Concrete Quality. New York: CRC Press.
Obla, K. H., R. L. Hill, M. D. A. Thomas, S. G. Shashiprakash, and O. Perebatova. 2003. Properties of Concrete Containing Ultra-Fine Coal Ash. ACI Materials Journal 100, no. 5: pp. 426–433.
Pal, S. C., A. Mukherjee, and S. R. Pathak. 2003. Investigation of Hydraulic Activity of Ground Granulated Blast Furnace Slag in Concrete. Cement and Concrete Research 33, no. 9: pp. 1481–1486.
Parker, J. L., and M. W. Rutland. 1993. Time-Dependent Adhesion between Glass Surfaces in Dilute Surfactant Solutions. Langmuir 9, no. 8: pp. 1965–1967.
Pedersen, K. H., A. D. Jensen, M. S. SkjØth-Rasmussen, and K. Dam-Johansen. 2008. A Review of the Interference of Carbon Containing Coal Ash with Air Entrainment in Concrete. Progress in Energy and Combustion Science 34, no. 2: pp. 135–154.
Pedersen, K. H., M. C. Melià, A. D. Jensen, and K. Dam-Johansen. 2009. Post-Treatment of Coal Ash by Ozone in a Fixed Bed Reactor. Fuel 23, no. 1: pp. 280–285.
Petersen, K. W., R. A. Swartz, L. L. Sutter, and T. J. Van Dam. 2001. “Air Void Analysis of Hardened Concrete with a Flatbed Scanner.” In Proceedings of the 24th International Conference on Cement Microscopy, pp. 304–316. Houghin, MI.
Peterson, K., L. Sutter, and M. Radlinski. 2009. The Practical Application of a Flatbed Scanner for Air-Void Characterization of Hardened Concrete. Journal of ASTM International 6, no. 9: pp. 1–15. https://doi.org/10.1520/JAI102446.
Pihlasalo, S., J. Kirjavainen, P. Hänninen, and H. Härmä. 2009. Ultrasensitive Protein Concentration Measurement Based on Particle Adsorption and Fluorescence Quenching. Analytical Chemistry 81, no. 12: pp. 4995–5000.
Qiao, M., G. Shan, J. Chen, S. Wu, N. Gao, Q. Ran, and J. Liu. 2020. Effects of Salts and Adsorption on the Performance of Air Entraining Agent with Different Charge Type in Solution and Cement Mortar. Construction and Building Materials 242: article 118188.
Qin, L., X. Gao, and Q. Li. 2019. Influences of Coal Fly Ash Containing Ammonium Salts on Properties of Cement Paste. Journal of Environmental Management 249: article 109374.
Rashad, A. M. 2015. A Brief on High-Volume Class F Fly Ash as Cement Replacement—A Guide for Civil Engineer. International Journal of Sustainable Built Environment 4, no. 2: pp. 278–306.
Rios, R. T., F. Lolli, L. Xie, Y. Xie, and K. E. Kurtis. 2021. Screening Candidate Supplementary Cementitious Materials under Standard and Accelerated Curing through Time-Series Surface Resistivity Measurements and Change-Point Detection. Cement and Concrete Research 148: article 106538.
Robl, T., A. Oberlink, and R. Jones. 2017. “Ash Beneficiation, Quality, and Standard Criteria.” In Coal Combustion Products (CCPs): Characteristics, Utilization and Beneficiation, ed. T. Robl, A. Oberlink, and R. Jones, pp. 217–224. Cambridge: Woodhead Publishing.
Ruiz Pestana, L., S. Shantha Raju, C. Guntoorkar, and P. Suraneni. 2023. Kinetic Monte Carlo Study on the Role of Heterogeneity in the Dissolution Kinetics of Glasses. The Journal of Physical Chemistry C 127, no. 16: pp. 7695–7701.
Sanalkumar, K. U., M. Lahoti, and E. H. Yang. 2019. Investigating the Potential Reactivity of Coal Ash for Geopolymerization. Construction and Building Material 225, no. 1: pp. 283–291.
Shehata, M. H., and M. D. Thomas. 2000. The Effect of Coal Ash Composition on the Expansion of Concrete due to Alkali–Silica Reaction. Cement and Concrete Research 30, no. 7: pp. 1063–1072.
Snellings, R. 2013. Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates. Journal of the American Ceramics Society 96, no. 8: pp. 2467–2475.
Snellings, R., T. Paulhiac, and K. L. Scrivener. 2014. The Effect of Mg on Slag Reactivity in Blended Cements. Waste and Biomass Valorization 5, no. 3: pp. 369–383.
Snellings, R., and K. L. Scrivener. 2016. Rapid Screening Tests for Supplementary Cementitious Materials: Past and Future. Materials and Structures 49, no. 8: pp. 3265–3279.
Song, Y., K. Yang, J. Chen, K. Wang, G. Sant, and M. Bauchy. 2021. Machine Learning Enables Rapid Screening of Reactive Coal Ashes Based on Their Network Topology. ACS Sustainable Chemistry & Engineering 9, no. 7: pp. 2639–2650.
Spencer, W. C., I. Diaz-Loya, A. Joshi, and R. Minkara. 2019. Statistical Analysis of Coal Ash Sampling Frequency. Materials Performance and Characterization 8, no. 1: pp. 41–50.
Spragg, R., C. Villani, K. Snyder, D. Bentz, J. W. Bullard, and J. Weiss. 2013. Factors that Influence Electrical Resistivity Measurements in Cementitious Systems. Transportation Research Record: Journal of the Transportation Research Board 2342, no. 1: pp. 90–98. https://doi.org/10.3141/2342-11.
Sumer, M. 2012. Compressive Strength and Sulfate Resistance Properties of Concretes Containing Class F and Class C Coal Ashes. Construction and Building Materials 34, no. 1: pp. 531–536.
Suraneni, P., L. Burris, C. R. Shearer, and R. D. Hooton. 2021. ASTM C618 Coal Ash Specification: Comparison with Other Specifications, Shortcomings, and Solutions. ACI Materials Journal 118, no. 1: pp. 157–167.
Suraneni, P., A. Hajibabaee, S. Ramanathan, Y. Wang, and W. J. Weiss. 2019. New Insights from Pozzolanic Testing of Supplementary Cementitious Materials. Cement and Concrete Composites 103, no. 1: pp. 331–338.
Suraneni, P., and W. J. Weiss. 2017. Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis. Cement and Concrete Composites 83, no. 1: pp. 273–278.
Sutter, L., R. D. Hooton, and S. Schlorholtz. 2013. NCHRP Report 749: Methods for Evaluating Coal Ash for Use in Highway Concrete. Transportation Research Board of the National Academies, Washington, DC.
Sutter, L. L., D. M. Vruno, G. C. Anzalone, and J. Dong. 2014. “Laboratory Study for Comparison of Class C Coal Ash Versus Class F Coal Ash for Concrete Pavement.” WHRP 0092-12-04. Wisconsin Department of Transportation, Madison.
Tagavifar, M., S. H. Jang, H. Sharma, D. Wang, L. Y. Chang, K. Mohanty, and G. A. Pope. 2018. Effect of pH on Adsorption of Anionic Surfactants on Limestone: Experimental Study and Surface Complexation Modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects 538: pp. 549–558.
Talens-Alesson, F. I. 1999. Behavior of Anionic Surfactant Micelles in the Presence of Al3+ and Ca2+. Journal of Dispersion Science and Technology 20, no. 7: pp. 1861–1871.
Thomas, M. D. 2007. “Optimizing the Use of Coal Ash in Concrete.” Portland Cement Association Report Volume 5420. Skokie, IL.
Thomas, M., R. Jewell, and R. Jones. 2017. “Coal Fly Ash as a Pozzolan.” In Coal Combustion Products (CCPs): Characteristics, Utilization and Beneficiation, ed. T. Robl, A. Oberlink, and R. Jones, pp. 121–154. Cambridge: Woodhead Publishing.
Tikalsky, P. J., and R. L. Carrasquillo. 1993. Influence of Coal Ash on the Sulfate Resistance of Concrete. ACI Materials Journal 89, no. 1: pp. 69–75.
Tosun-Felekoğlu, K. 2012. The Effect of C3A Content on Sulfate Durability of Portland Limestone Cement Mortars. Construction and Building Materials 36, no. 1: pp. 437–447.
Tunstall, L. E., M. T. Ley, and G. W. Scherer. 2021. Air Entraining Admixtures: Mechanisms, Evaluations, and Interactions. Cement and Concrete Research 150: article 106557.
Tunstall, L. E., G. W. Scherer, and R. K. Prud’homme. 2017. Studying AEA Interaction in Cement Systems Using Tensiometry. Cement and Concrete Research 92: pp. 29–36.
Vollpracht, A., B. Lothenbach, R. Snellings, and J. Haufe. 2016. The Pore Solution of Blended Cements: A Review. Materials and Structures 49: pp. 3341–3367. https://doi.org/10.1617/s11527-015-0724-1.
Wang, J., Y. Zhang, T. Wang, H. Xu., and W.-P. Pan. 2020. Effect of Modified Fly Ash Injection on As, Se, and Pb Emissions in Coal-Fired Power Plant. Chemical Engineering Journal 380: article 122561.
Wang, T., T. Ishida, and R. Gu. 2018. A Comparison of the Specific Surface Area of Coal Ash Measured by Image Analysis with Conventional Methods. Construction and Building Materials 190, no. 1: pp. 1163–1172.
Wang, X., X. Wang, S. Sadati, P. Taylor, and K. Wang. 2019. A Modified Foam Drainage Test Protocol for Assessing Incompatibility of Admixture Combinations and Stability of Air Structure in Cementitious Systems. Construction and Building Materials 211, pp. 174–184.
Wang, Y. 2022. “Reactivity and Reactivity Tests for Unconventional Coal Ashes.” PhD diss., University of Miami, FL.
Wang, Y., B. C. Acarturk, L. Burris, R. D. Hooton, C. R. Shearer, and P. Suraneni. 2022. Physicochemical Characterization of Unconventional Fly Ashes. Fuel 316: article 123318.
Wang, Y., L. Burris, C. R. Shearer, R. D. Hooton, and P. Suraneni. 2021. Strength Activity Index and Bulk Resistivity Index Modifications that Differentiate Inert and Reactive Materials. Cement and Concrete Composites 124: article 104240.
Wang, Y., L. Burris, C. R. Shearer, R. D. Hooton, and P. Suraneni. 2022. Effects of Unconventional Fly Ashes on Cementitious Paste Properties. Cement and Concrete Composites 125, no. 1: article 104291.
Wang, Y., L. Burris, C. R. Shearer, R. D. Hooton, and P. Suraneni. 2023. Characterization and Reactivity of Size-Fractionated Unconventional Fly Ashes. Materials and Structures 56, no. 3: article 49.
Wang, Y., H. Lu, R. Xiao, W. Hu, and B. Huang. 2022. Experimental Study on the Stability and Distribution of Air Voids in Fresh Fly Ash Concrete. Materials 15, no. 23: article 8332.
Wang, Y., S. Ramanathan, L. Burris, R. D. Hooton, C. R. Shearer, and P. Suraneni. 2022a. Reactivity of Unconventional Fly Ashes, SCMs, and Fillers: Effects of Sulfates, Carbonates, and Temperature. Advances in Civil Engineering Materials 11, no. 2: pp. 1–19.
Wang, Y., S. Ramanathan, L. Burris, R. D. Hooton, C. R. Shearer, and P. Suraneni. 2022b. A Rapid Furnace-Based Gravimetry Test for Assessing Reactivity of Supplementary Cementitious Materials. Materials and Structures 55, no. 7: article 193.
Wang, Y. and P. Suraneni. 2019. Experimental Methods to Determine the Feasibility of Steel Slags as Supplementary Cementitious Materials. Construction and Building Materials 204, no. 1: pp. 458–467.
Ward, C. R., and D. French. 2006. Determination of Glass Content and Estimation of Glass Composition in Coal Ash Using Quantitative X-Ray Diffractometry. Fuel 85, no. 16: pp. 2268–2277.
Watkins, M. K., Z. Ahmed, L. L. Sutter, and D. Hand. 2015. Characterization of Coal Fly Ash by Absolute Foam Index. ACI Materials Journal 112, no. 3: pp. 393–399.
Wei, X., L. Xiao, and Z. Li. 2012. Prediction of Standard Compressive Strength of Cement by the Electrical Resistivity Measurement. Construction and Building Materials 31, no. 1: pp. 341–346.
Weiss, W. J., R. P. Spragg, O. B. Isgor, M. T. Ley, and T. Van Dam. 2018. “Toward Performance Specifications for Concrete: Linking Resistivity, RCPT and Diffusion Predictions Using the Formation Factor for Use in Specifications.” In High Tech Concrete: Where Technology and Engineering Meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12–14, 2017, ed. D.A. Hordijk and M. Luković, pp. 2057–2065. Cham, Switzerland: Springer International Publishing.
Winnik, F. M., and S. T. Regismond. 1996. Fluorescence Methods in the Study of the Interactions of Surfactants with Polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 118, no. 1–2: pp. 1–39.
Wirth, X., D. Benkeser, N. N. Yeboah, C. R. Shearer, K. E. Kurtis, and S. E. Burns. 2019. Evaluation of Alternative Fly Ashes as Supplementary Cementitious Materials. ACI Materials Journal 116, no. 4: pp. 69–77.
Wirth, X., C. R. Shearer, S. E. Burns, and K. E. Kurtis. 2017. “Evolution of the Properties of Organic Matter and Mineral Phases of Reclaimed Coal Fly Ash.” In World of Coal Ash Conference Proceedings, pp. 1–10. Lexington, KY.
Wu, C. Y., H. F. Yu, and H. F. Zhang. 2012. Extraction of Aluminum by Pressure Acid-Leaching Method from Coal Fly Ash. Transactions of Nonferrous Metals Society of China 22, no. 9: pp. 2282–2288.
Xiao, L., and Z. Li. 2008. Early-Age Hydration of Fresh Concrete Monitored by Non-Contact Electrical Resistivity Measurement. Cement and Concrete Research 38, no. 3: pp. 312–319.
Xing, Y., F. Guo, M. Xu, X. Gui, H. Li, G. Li, Y. Xia, and H. Han. 2019. Separation of Unburned Carbon from Coal Fly Ash: A Review. Powder Technology 353, no.1: pp. 372–384.
Yang, J., Y. Zhao, X. Guo, H. Lia, J. Zhang, and C. Zheng. 2018. Removal of Elemental Mercury from Flue Gas by Recyclable CuCl2 Modified Magnetospheres from Coal Ash. Part 4: Performance of Sorbent Injection in an Entrained Flow Reactor System. Fuel 220, no. 1: pp. 403–411.
Yao., Z. T., X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, and Y. Q. Xi. 2015. A Comprehensive Review on the Applications of Coal Fly Ash. Earth-Science Reviews 141: pp. 105–121.
Yeheyis, M. B., J. Q. Shang, and E. K. Yanful. 2009. “Chemical and Mineralogical Transformations of Coal Fly Ash after Landfilling.” In World of Coal Ash Conference Proceedings, pp. 223–234. Lexington, KY.
Yekeen, N., M. A. Manan, A. K. Idris, and A. M. Samin. 2017. Influence of Surfactant and Electrolyte Concentrations on Surfactant Adsorption and Foaming Characteristics. Journal of Petroleum Science and Engineering, 149: pp. 612–622.
Yilmaz, Y., H. S. Coban, B. Cetin, and T. B. Edil. 2019. Use of Standard and Off-Spec Coal Ashes for Soil Stabilization. Journal of Materials in Civil Engineering 31, no. 1: article 04018390.
Yu, D., Y. Wang, J. Zhang, M. Tian, Y. Han, and Y. Wang. 2012. Effects of Calcium Ions on Solubility and Aggregation Behavior of an Anionic Sulfonate Gemini Surfactant in Aqueous Solutions. Journal of Colloid and Interface Science 381, no. 1: pp. 83–88.
Yu, J., I. Külaots, N. Sabanegh, Y. Gao, R. H. Hurt, E. S. Suuberg, and A. Mehta. 2000. Adsorptive and Optical Properties of Coal Ash from Coal and Petroleum Coke Co-Firing. Energy & Fuels 14, no.3: pp. 591–596.
Zhang, X., J. K. Jackson, and H. M. Burt. 1996. Determination of Surfactant Critical Micelle Concentration by a Novel Fluorescence Depolarization Technique. Journal of Biochemical and Biophysical Methods 31, no. 3–4: pp. 145–150.