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Appendix B. Common Data Collected and Metrics Summary 

This appendix summarizes common data collected and metrics used to implement and evaluate 
HVE campaigns. Methods that may be appropriate to evaluate the effectiveness of HVE 
campaigns are summarized in the following sections. The methods are presented in terms of their 
technical, data, and computational requirements; their strengths; their limitations (e.g., potential 
biases); the considerations involved in their deployment; example outcomes; and some basic 
(noncomprehensive) method details. 

B.1 Descriptive Statistics 

B.1.1 Technical, Data, and Computational Requirements 

This method has few requirements. Once measures of interest are identified and collected, simple 
summaries such as mean, standard deviation, minimum, maximum, count, etc. are computed. 
The computations can easily be performed by hand or by using a calculator, spreadsheet, etc. 
Thus, the time and costs associated with descriptive statistics are low compared to other 
methods.  

B.1.2 Strengths 

Few resources are required beyond the data collected on the measures of interest. Additionally, 
the results are easy to communicate and interpret. 

B.1.3 Limitations 

This method is purely descriptive. It does not provide detailed insights into effectiveness or the 
relationships between the intervention and outcomes of interest. 

B.1.4 Considerations 

Descriptive statistics are useful for describing basic items such as the number of tickets issued, 
the mean age of distracted drivers cited, etc. These statistics can provide context for additional 
in-depth analysis. They can also be used to describe the scope of the HVE implementation. 

B.1.5 Example Outcomes for Analysis 

• Number of citations issued  
• Number of commercials aired per day  
• Mean age and genders of drivers not wearing seat belts  
• Self-reported frequency of cell phone use while driving (from surveys)  

B.1.6 Method Details 

Descriptive statistics are methodologically simple. Data are collected on the measures of interest, 
and then basic statistics, including mean, standard deviation, minimum, maximum, count, range, 



etc., can be computed and summarized. For example, the mean value of a variable is typically 
computed as follows: 

𝜇𝜇 =
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

where 𝜇𝜇 = the mean value, 𝑁𝑁 = the number of observations, and 𝑥𝑥𝑖𝑖 = the individual observation 
values for the variable of interest. 

Additionally, the standard deviation of a sample is computed as follows: 

𝜎𝜎 = �∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑁𝑁
𝑖𝑖=1
𝑁𝑁 − 1

 

Where 𝜎𝜎 = the standard deviation. The other variables are as previously defined. 

B.1.6.1 Utility for HVE Evaluation 

Descriptive statistics are useful for displaying information about HVE campaigns such as the 
number of citations issued or a comparison of cell phone use before and after the campaign. 
They are most useful for reporting purposes.  

Simple statistics are not able to assess the actual effectiveness of HVE campaigns. They are also 
not likely to detect differences due to combined HVE campaigns. 

B.2 z-Test or t-Test 

B.2.1 Technical, Data, and Computational Requirements 

The z-test and t-test are simple statistical methods for hypothesis testing. They require data for 
the measures of interest (assuming they have continuous values and are normally distributed or 
are measures of proportions), a statistical hypothesis to test (both null and alternative 
hypotheses), and statistical tables or software to compute p-values from the z- or t-statistics.  

B.2.2 Strengths 

The methods are simple and easy to implement. They can be used to compare the outcome with a 
specified value (e.g., to determine whether seat belt use was greater than 90%) or to compare two 
samples (e.g., seat belt use rates in similar areas that implemented/did not implement a campaign 
related to seat belt use). 

B.2.3 Limitations 

These methods are only valid for data that are continuous and approximately normally 
distributed or for comparing proportions, and a null hypothesis and an alternative hypothesis 
must be specified. These methods do not account for common sources of bias such as selection 



bias, aggregation bias, regression to the mean, endogeneity, etc. These methods are often used on 
outcomes that do not meet the basic method assumptions underlying the methods. 

B.2.4 Considerations 

It should be determined whether the descriptive statistics resulting from this method will provide 
useful information for decision-makers or other stakeholders. This could include providing 
context for additional analysis performed. 

B.2.5 Example Outcomes for Analysis 

• Percent seat belt use (a documented case of this is in Retting et al. 2018)  
• Comparison of the mean speeds before and after an HVE campaign related to speeding 

B.2.6 Method Details 

There are multiple versions of these tests, including single-sample tests (where the data are tested 
against a specified value), two-sample tests (where the data are collected in two areas and/or time 
periods and compared), and paired samples (where the data are collected for two conditions for 
the sample people/locations). 

The single-sample t-test evaluates whether the mean value of a sample is statistically different 
from a specific value. The t-test can be used with both small and large samples and converges to 
the z-test when the sample size approaches infinity. The null hypothesis (H0) for the t-test states 
that the mean value is equal to some value (μ0). The alternative hypothesis (H1) states that the 
mean value does not equal/is greater than/is less than μ0. The t-statistic standardizes the 
difference between μ1 and μ0. The degrees of freedom for the single-sample t-test are (df) = n-1. 
The equation for computing the single-sample t-test is as follows: 

𝑡𝑡 =
𝜇𝜇1 − 𝜇𝜇0

𝜎𝜎
√𝑁𝑁

 

After calculating the t-statistic, the p-value is computed using the t-statistic, degrees of freedom, 
and alternative hypothesis (which is used to determine whether it is a single-tail or two-tail p-
value).  

The key difference between the t-test and z-test is that the z-test does not require using degrees 
of freedom, which makes computing the p-values slightly easier. Common statistical practice is 
that if the sample has at least 30 observations, a z-test is used. 

The t-test and z-test can also be modified for use in comparing independent proportions. For 
instance, the measure of interest may be the percentage of occupants that used seat belts. If the 
proportions are measured before and after an HVE campaign targeting seat belt use, the two-
sample z-test for comparison of proportions would be computed using the following: 



𝑧𝑧 =
𝑝𝑝1 − 𝑝𝑝2

�𝑝𝑝1(1 − 𝑝𝑝1)
𝑁𝑁1

+ 𝑝𝑝2(1 − 𝑝𝑝2)
𝑁𝑁2

 

where 𝑝𝑝1 = the proportion using a seat belt after the campaign, 𝑝𝑝2 = the proportion using a seat 
belt before the campaign, 𝑁𝑁1 = the number of data points for the period after the campaign, and 
𝑁𝑁2 = the number of data points for the period before the campaign. 

B.2.7 Utility for HVE Evaluation 

The z-test and t-test can be used to compare differences between metrics collected before, 
during, and after HVE campaigns and are able to show whether changes are statistically 
significant. They are best suited to metrics such as speed, seat belt use, or changes in the number 
of violations.  

The z-test and t-test are not able to account for issues such as regression to the mean or other 
factors that may have influenced changes in metrics. For instance, adverse weather conditions 
during the campaign may have impacted speed independently of the campaign. They are also not 
likely to detect differences due to combined HVE campaigns. 

B.3 Naïve Before-and-After Comparisons 

B.3.1 Technical, Data, and Computational Requirements 

This method is considered to be a simple statistical method. It requires basic data (the measures 
of interest) from before and after implementation of the intervention. Then, basic comparisons 
are made for the data before and after implementation. Thus, the requirements for data, technical 
knowledge, and computational equipment/software are relatively low. 

B.3.2 Strengths 

This method is easy to compute, can show benefits (e.g., reductions in crashes), and has low data 
needs. 

B.3.3 Limitations 

This method does not control for omitted variables, regression to the mean, or other potential 
sources of bias. It also requires that data for the measures of interest be collected/available from 
both before and after the intervention. Additionally, it is possible that the measure of interest, 
such as crash counts, can have no observations in one of the periods (before or after), which 
causes problems for evaluating the effectiveness of the intervention. 

B.3.4 Considerations 

It should be determined whether the use of a naïve before-and-after method gives adequate 
results for decisions that need to be made or whether additional biases need to be accounted for. 



B.3.5 Example Outcomes for Analysis 

• Comparison of the percent of traffic traveling more than 5 mph over the speed limit 
• Comparison of crash frequencies 
• Comparison of seat belt use rates 
• Comparison of self-reported drowsy driving  
• Comparison of the percent of vehicles properly yielding to pedestrians 

B.3.6 Method Details 

The comparison of data from before and after implementation of an intervention (i.e., an HVE 
campaign) utilizes appropriate statistical methods. For instance, a simple z-test can be used to 
compare the percent of traffic traveling 5 mph or more over the speed limit before and after an 
enforcement campaign. Examples of statistical methods that can be used for naïve before-and-
after analyses based on the type of outcome (continuous, proportions, counts, etc.) are provided 
in Table B-1. 

Table B-1. Example statistical methods for naïve before-and-after analysis based on outcome 
type. 

Outcome Type Example Statistical Methods (Noncomprehensive) 

Continuous Comparison of mean 
speeds t-test, z-test 

Proportions 
(binomial) Percent seat belt use t-test, z-test, McNemar’s chi-squared test, 

RR, odds ratio 
Count Crash frequency RR, odds ratio 

Multinomial or 
ordinal Crash severity 

Chi-squared test, Mann-Whitney U test, 
Wilcoxon signed rank sum test, Fisher’s 
exact test 

 

B.3.7 Utility for HVE Evaluation 

Naïve before-and-after comparisons include and are similar to z- and t-tests. They can be used to 
compare differences between metrics collected before, during, and after HVE campaigns and are 
able to show whether changes are statistically significant. They are best suited to metrics such as 
speed, seat belt use, or changes in the number of violations.  

Naïve before-and-after comparisons are not able to account for issues such as regression to the 
mean or other factors that may have influenced changes in metrics. For instance, adverse weather 
conditions during the campaign may have impacted speed independently of the campaign. They 
are also not likely to detect differences due to combined HVE campaigns. 



B.4 Before-and-After Comparisons with Comparison Group 

B.4.1 Technical, Data, and Computational Requirements 

The requirements for this method are similar to those of the naïve before-and-after method but 
with the addition of a comparison group that did not receive the intervention (i.e., the HVE 
campaign). The need for data from the comparison group increases the data requirements for this 
method relative to simpler methods. This analysis method is also slightly more difficult to 
implement due to the need to account for the comparison group. 

B.4.2 Strengths 

The use of a comparison group reduces the likelihood of bias due to factors correlated with the 
intervention (e.g., increased traffic in the after period). This method can also allow adjustments 
for time-based differences and patterns that are not possible with the naïve before-and-after 
method (e.g., changes in driver behaviors based on seasons of the year). Additionally, this 
method can include additional variables (e.g., traffic volumes, weather) in the evaluation to 
adjust for their impacts on the estimates. 

B.4.3 Limitations 

This method does not account for some biases such as regression to the mean and selection bias. 
It also requires data from both before and after the intervention. 

B.4.4 Considerations 

It should be determined whether the use of a before-and-after study with a comparison group will 
give adequate results for the decisions that need to be made or whether there’s a need to account 
for additional biases. Additionally, the variables that should be adjusted for (beyond the key 
measures of interest or outcomes) need to be identified.  

B.4.5 Example Outcomes for Analysis 

• Comparison of the percent of traffic traveling more than 5 mph over the speed limit 
• Comparison of crash frequencies 
• Comparison of seat belt use rates 
• Comparison of self-reported drowsy driving  
• Comparison of the percent of vehicles properly yielding to pedestrians 

B.4.6 Method Details 

The before-and-after method with a comparison group uses the comparison group as a baseline 
for changes between the before and after periods that would have occurred had the intervention 
not taken place. Using this baseline, the effect of the intervention is then evaluated. This can 
range from use of the baseline for simple adjustments to detailed methods that use predictive 
models developed using the comparison group and then applied to the data that received the 
intervention. Details on the use of this method for evaluating crash counts are readily available in 
the American Association of State Highway and Transportation Officials Highway Safety 



Manual and other sources (e.g., the U.S. DOT publication A Guide to Developing Quality Crash 
Modification Factors).  

Another application for this method would be a comparison of the percentage of drivers that 
properly yield to pedestrians. A simple analytical method for evaluating this outcome using a 
before-and-after analysis with a comparison group would be to use RR. The equations for this are 
as follows: 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 

𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 =
𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎

𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎
 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 =
𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝

𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝
 

𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 =
𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝

𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝
 

𝑅𝑅𝑅𝑅 =

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝
𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝

=
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝

𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 ⋅ 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝
 

where: 

• 𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = the number of proper yields to pedestrians in the intervention area in the after 
period 

• 𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = the total number of yields to pedestrians in the intervention area in the after 
period 

• 𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 = the number of proper yields to pedestrians in the comparison area in the 
after period 

• 𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 = the total number of yields to pedestrians in the comparison area in the 
after period 

• 𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 = the number of proper yields to pedestrians in the intervention area in the 
before period 

• 𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 = the total number of yields to pedestrians in the intervention area in the before 
period 

• 𝑁𝑁𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 = the number of proper yields to pedestrians in the comparison area in 
the before period 

• 𝑁𝑁𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 = the total number of yields to pedestrians in the comparison area in the 
before period 

The standard error (SE) for the log-transformed RR is computed as follows: 



𝑆𝑆𝑆𝑆 = �
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎

+
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝

𝑅𝑅𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝
 

The 95% confidence interval (𝐶𝐶𝐼𝐼95%) for the RR is then computed as follows: 

𝐶𝐶𝐼𝐼95% = exp(ln(𝑅𝑅𝑅𝑅) ± 1.96𝑆𝑆𝑆𝑆) 

If the 95% confidence interval includes the value 1, then the change associated with the 
intervention is not statistically significant at the 95% confidence level (i.e., the p-value is greater 
than 0.05).  

B.4.7 Utility for HVE Evaluation 

The before-and-after method with a comparison group is similar to a naïve before-and-after 
comparison but is able to account for factors not related to the intervention that may have 
impacted the campaign metrics. For instance, if adverse weather conditions were present during 
a campaign, changes in the control group would account for those conditions. If, for example, 
speeds in the campaign area decreased by 5 mph and speeds in the control areas decreased by 2 
mph, approximately a decrease of 3 mph could be attributed to the campaign. The before-and-
after method with a comparison group can be used to compare differences between metrics 
collected before, during, and after HVE campaigns and is able to show whether changes are 
statistically significant. This method is best suited to metrics such as speed, seat belt use, or 
changes in the number of violations.  

The before-and-after method with a comparison group is not able to account for specific factors 
that may have impacted metrics. It is also not likely to detect differences due to combined HVE 
campaigns. 

B.5 Empirical/Full Bayes Before-After Comparison 

B.5.1 Technical, Data, and Computational Requirements 

This method builds on the before-after method with a comparison group and requires, in some 
cases, additional data. This method requires additional variables not associated with the 
intervention in order to develop predictive models using the comparison data. The predictions are 
then used on the intervention data to conduct a before-after analysis while making additional 
adjustments. Thus, this method entails additional data, technical, and computational requirements 
compared to other methods.  

B.5.2 Strengths 

This method adjusts for multiple sources of bias, including selection bias and regression to the 
mean. 



B.5.3 Limitations 

Statistical software is required to estimate the prediction models, and advanced statistical 
expertise is required to perform the evaluation. The results may be difficult for stakeholders to 
understand if not presented appropriately. 

B.5.4 Considerations 

It should be determined whether the use of a simpler method will produce adequate results for 
the intervention based on the needs of the analysis. The availability of adequate resources 
(including technical expertise and software) should also be considered. 

B.5.5 Example Outcomes for Analysis 

• Comparison of the percent of traffic traveling more than 5 mph over the speed limit 
• Comparison of crash frequencies 
• Comparison of seat belt use rates 
• Comparison of self-reported drowsy driving  
• Comparison of the percent of vehicles properly yielding to pedestrians 

B.5.6 Method Details 

As with the other before-after methods, the specific computations used depend on the type of 
outcome being evaluated. For the purposes of the report, the method described in this section 
outlines the traditional process used for an empirical Bayes before-after analysis for crash 
frequency. The method involves the following steps: 

Step 1. Estimate a SPF using a comparable reference group. SPFs are estimated using count 
regression (e.g., negative binomial regression). 

Step 2. Estimate the expected number of crashes for each year in the before period for each 
treated entity using the SPF. 

Step 3. Compute the sum of SPF predictions for each treated entity (𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎) in the before 
period. 

Step 4. Estimate the expected number of crashes in the before period for each treated entity 
(𝑁𝑁𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸,𝑖𝑖) and the associated variance for the expected number using the empirical Bayes 
adjustments shown in the following equations: 

𝑁𝑁𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸,𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 + (1 − 𝑤𝑤𝑖𝑖)𝑁𝑁𝑝𝑝𝑏𝑏𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 

where 𝑁𝑁𝑝𝑝𝑏𝑏𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 = the sum of the reported crashes on treated entity i in the before period, 
𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎 = the predicted number of crashes on treated entity i in the before period (using the 
SPF), and 𝑤𝑤𝑖𝑖 = a weighting factor estimated using the following: 



𝑤𝑤𝑖𝑖 =
1

1 + 𝛼𝛼𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎
 

where 𝛼𝛼 = the overdispersion parameter from the SPF. 

Also, compute the variance of the empirical Bayes prediction as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸,𝑖𝑖� = (1 − 𝑤𝑤𝑖𝑖)𝑁𝑁𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸,𝑖𝑖 

Step 5. Estimate the number of crashes for each year in the after period for each treated entity 
using the SPF. Calculate the sum of the SPF-predicted crashes for the after period (𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎).  

Step 6. Calculate the ratio of SPF-predicted crashes from the before (𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎) and after 
(𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) periods for each treated entity using the following: 

𝑅𝑅𝑖𝑖 =
𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑁𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝,𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎
 

Step 7. Estimate the number of crashes that would have occurred had the treatment not been 
implemented (𝑁𝑁𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and the variance of the estimate of 𝑁𝑁𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 using the 
following: 

𝑁𝑁𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑𝑅𝑅𝑖𝑖𝑁𝑁𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸,𝑖𝑖 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) = ∑𝑅𝑅𝑖𝑖2𝑉𝑉𝑉𝑉𝑉𝑉(𝑁𝑁𝑏𝑏𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸,𝑖𝑖) 

Step 8. Estimate the CMF (denoted as 𝜃𝜃) and the variance of the treatment effect using the 
following: 

𝜃𝜃 =
𝑁𝑁𝑝𝑝𝑏𝑏𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
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where 𝑁𝑁𝑝𝑝𝑏𝑏𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = the sum of reported crashes on treated entity i in the after period. 

The 95% confidence interval for CMFs developed using this method are commonly computed 
using the following:  

𝐶𝐶𝐼𝐼95% = 𝜃𝜃 ± 1.96�𝑉𝑉𝑉𝑉𝑉𝑉(𝜃𝜃) 



As with the RR, if the 95% confidence interval contains the value 1, the result is considered not 
statistically significant at the 95% confidence level. Values smaller than 1 indicate reductions in 
crashes, while values larger than 1 indicate increases in crashes associated with the intervention. 

B.5.7 Utility for HVE Evaluation 

Empirical/full Bayes before-after comparison is able to account for factors such as regression to 
the mean and other factors that may have influenced changes in the metrics. This method is also 
more likely than other methods to be able to detect the impact of combined HVE campaigns. 

B.6 Logistic Regression 

B.6.1 Technical, Data, and Computational Requirements 

Logistic regression is a traditional statistical method that predicts probabilities of a dichotomous 
outcome (i.e., categorical outcome with two possible values). The outcome variable has values of 
0 or 1, indicating whether the outcome is observed or not (i.e., 0 = false, 1 = true). As a rule, the 
outcome with the fewest number of observations (0 or 1) should have at least 10 observations for 
each variable included in the model. For example, a data set with an outcome that is dichotomous 
where there are 5,000 observations but only 50 of those have an outcome value of “1” can, as a 
rule, include up to five predictor variables in the regression model. 

Logistic regression also is difficult to compute without statistical software. While there are many 
statistical packages that can be used to estimate these models, interpretation of the results is not 
always simple. Thus, it is important that the results be carefully described and interpreted by 
someone with the appropriate training and experience to ensure the results are not misused. 

B.6.2 Strengths 

This method can be used to evaluate the effects of interventions on binary, or dichotomous, 
outcomes while accounting for additional variables (reducing the likelihood of omitted variable 
bias). It can also be used for supporting models based on utility theory (i.e., a type of decision 
theory). 

B.6.3 Limitations 

The results of these models are not always easily interpreted. Odds ratios are typically used, 
although marginal effects can also be used. Additionally, logistic regression is sensitive to 
outliers. 

B.6.4 Considerations 

Logistic regression can be considered whenever the measure of interest being evaluated has 
binary values and there are other variables (i.e., predictors) that can or should be 
adjusted/accounted for in the analysis. 



B.6.5 Example Outcomes for Analysis 

• Seat belt use 
• Whether the vehicle is insured 
• Speeding versus not speeding 
• Cell phone use 

B.6.6 Method Details 

Logistic regression is a probabilistic method that predicts the probability of a binary outcome 
using the following equation: 

𝑃𝑃(𝑦𝑦 = 1|𝛽𝛽,𝑋𝑋) =
exp(𝛽𝛽𝑋𝑋)

1 + exp(𝛽𝛽𝑋𝑋) 

where 𝛽𝛽 = a vector of estimated coefficients, 𝑋𝑋 = a vector of predictor variables, and 
𝑃𝑃(𝑦𝑦 = 1|𝛽𝛽,𝑋𝑋) = the probability the outcome has a value 1, given 𝛽𝛽 and 𝑋𝑋. 

The probability of the outcome having a value 0 (𝑃𝑃(𝑦𝑦 = 0|𝛽𝛽,𝑋𝑋)) is as follows: 

𝑃𝑃(𝑦𝑦 = 0|𝛽𝛽,𝑋𝑋) = 1 − 𝑃𝑃(𝑦𝑦 = 1|𝛽𝛽,𝑋𝑋) = 1 −
exp(𝛽𝛽𝑋𝑋)

1 + exp(𝛽𝛽𝑋𝑋) 

The coefficients are estimated using maximum likelihood methods. The quality of the model is 
evaluated using one or more of many existing methods and measures including the following: 

• Accuracy 
• Precision 
• Recall 
• Specificity 
• The area under the curve from a receiver operating characteristic plot 
• Pseudo R2 
• AIC 
• BIC 
• Validation methods (such as cross-validation and k-fold cross-validation) 

B.6.7 Utility for HVE Evaluation 

Logistic regression is well suited for evaluation of survey results. This method is also more likely 
than other methods to be able to detect differences in surveys with multiple barriers.  

B.7 Quasi-Induced Exposure 

B.7.1 Technical, Data, and Computational Requirements 

This method is based on police-reported crash data involving multiple vehicles. However, it can 
also be extended to single-vehicle crashes for cases where the intervention of interest only 



impacts specific crash types and can be reasonably argued that it does not impact other crash 
types (i.e., independence). Once the crash data are available, the computations and process range 
from simple calculations to the use of logistic regression. 

B.7.2 Strengths 

The method accounts for exposure, even when exposure metrics (such as vehicle miles traveled) 
are not available. 

B.7.3 Limitations 

The method requires identifying “at-fault” drivers in multi-vehicle collisions. This may be 
difficult, depending on the intervention of interest. 

B.7.4 Considerations 

If the exposure metrics of interest are available, then this method may not be necessary or 
appropriate. However, it is useful for many applications where exposure is not available or is 
known to have significant error in the exposure data. 

B.7.5 Example Outcomes for Analysis 

• Seat belt use 
• Fatigued driving 
• Distracted driving 
• Cell phone use 

B.7.6 Method Details 

The quasi-induced exposure method is based on the concept that within police-reported crash 
databases an analyst can use subpopulations that are statistically independent of an intervention, 
characteristic of interest, etc., to adjust for or estimate exposure metrics. It is well documented 
that failing to account for exposure (e.g., VMT) results in biased estimates (AASHTO 2010). 
However, it is often difficult, infeasible, or impossible to directly measure exposure for the group 
of interest in an analysis, such as pedestrian crossing counts, VMT with/without seat belt usage, 
etc. Thus, this method provides an analytical solution to account for and estimate these measures 
of exposure. For details of variations of the quasi-induced exposure method, along with example 
applications, see Carr (1969), Lyles et al. (1991), Stamatiadis and Deacon (1997), Yan et al. 
(2005), Keall and Newstead (2009), Jiang and Lyles (2010), and Sharmin et al. (2020). 

The method relies on either: (1) identifying drivers at-fault and not-at-fault in multi-vehicle 
crashes or (2) identifying crash types associated with (i.e., statistically dependent) the 
intervention and other crash types that are statistically independent (i.e., not influenced) by the 
intervention. Given that enforcement agencies are intimately familiar with how the crash data is 
collected and reported, the identification of these conditions is likely to be the most accurate 
when they are implementing the method or are involved in it. 



After identification of the different conditions (i.e., at-fault/not-at-fault or crash types 
dependent/independent of the intervention), the statistical analysis often involves simple 
computations of RR or IRR, binary logistic regression, or including inferred exposure measures 
into other statistical models (e.g., negative binomial regression). 

B.7.7 Utility for HVE Evaluation 

Quasi-induced exposure is best suited to crash analyses. It is most useful when exposure values 
are difficult to obtain. It is less likely to provide a method to identify differences in combined 
HVE methods. 

B.8 Regression with Spatial and/or Temporal Adjustments 

B.8.1 Technical, Data, and Computational Requirements 

These models require spatial and/or temporal information for inclusion in the regression 
methods. The spatial correlations are often handled using Bayesian or other, similar, methods. 
The temporal aspects can be handled using multiple approaches, although one of the most 
common is using time series approaches. Thus, there are significant computational and technical 
requirements for these models. Software specific to these models (such as the R packages: 
Surveillance, McGLM, hhh4adon, hhh4contacts, Carst, BUGS, R-INLA, and CARBayesST) and 
hardware that can support the computations (adequate processors, memory, etc.) often require 
specialized training and expertise. 

B.8.2 Strengths 

The method adjusts for spatial and temporal correlations that are not captured in other 
methodological frameworks. 

B.8.3 Limitations 

The method can be resource intensive and require data that are not readily available. 
Additionally, it may be difficult for most decision-makers to interpret and understand. 

B.8.4 Considerations 

It should be considered whether there are likely to be significant temporal trends and/or 
significant spatial correlations that need to be captured. 

B.8.5 Example Outcomes for Analysis 

• Speeding-related crashes per road segment or intersection (spatial and temporal) 
• Seat belt use (spatial and temporal) 
• Distracted driving (spatial and temporal) 
• Speeding by time of day, day of week, etc. (temporal) 
• Number of citations issued (spatial and temporal) 



B.8.6 Method Details 

These regression models allow for greater use of information when available. For example, the 
outcome one week may be a good predictor for the outcome in the following week. Thus, when 
spatial or temporal data are available, and may improve understanding of the intervention of 
interest, spatiotemporal models can be used to leverage the additional information. For detailed 
examples of several spatiotemporal regression models applied to count outcomes, see González-
Pérez et al. (2021). 

B.8.7 Utility for HVE Evaluation 

Regression with spatial and/or temporal adjustments is able to account for temporal and spatial 
variations. As a result, it is well suited to evaluate impacts of different methodologies. 
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