National Academies of Sciences, Engineering, and Medicine
Committee on Revitalizing Graduate STEM Education for the 21st Century
This document was available on the project site for the Committee on Revitalizing Graduate STEM Education for the 21st Century and the call for community input was open to the public from August 10 to September 22, 2017.
The members of the National Academies of Sciences, Engineering, and Medicine’s (National Academies) Committee on Revitalizing Graduate STEM Education for the 21st century are soliciting input into ways to structure U.S. graduate education programs to better serve the needs of diverse students, the scientific enterprise, and the Nation.1 We would appreciate your reactions to some of the input the Committee has received from various stakeholders (e.g., students, faculty, scientific societies, and funding agencies), as well as your own thoughts on these issues.
The National Academies created this Committee to respond to the concern that the current system is inadequately educating graduate students in science, technology, engineering, and mathematics (STEM) to prepare them for productive careers in the 21st century. For example, all available evidence suggests that over 60 percent of new Ph.D. students in STEM do not pursue careers in academia.2 However, the Ph.D. graduate education system has changed relatively little over the past 100 years, with its fundamental format directed at preparing students primarily for research careers in academia. At the master’s level, there
___________________
1 Visit the project website for Statement of Task, list of Committee members, and project information.
2 National Center for Science and Engineering Statistics. 2016. Doctorate recipients from U.S. universities: 2015. Special Report NSF 17-306. Arlington, VA: National Science Foundation, Table 46. Available: www.nsf.gov/statistics/2017/nsf17306/.
have been more significant changes over the last decade or two, but there is concern that those changes may have been too few or too small in scale. Given the diversity of career paths that students pursue—coupled with changes in demographics of the student populations, and with the rapid evolution in the ways science itself is conducted—we and others believe that there is an urgent need to ensure that the graduate education system is better aligned with the needs of all students, as well as the needs of the scientific enterprise, potential employers, and the broader society. The National Academies charged this Committee with considering the questions of how well the current graduate education system is equipping students for current and anticipated future needs and what changes should be made to increase its effectiveness.
The Committee recognizes that many elements of the existing graduate education system are working well and serve many of the needs of an array of higher education institutions, academic departments, faculty members, and other stakeholders. The Committee will strive to ensure that those benefits are not compromised. Nevertheless, evidence from students, recent graduates, and employers suggest that the system has not fully kept pace with broader changes in society, or in the ways science and engineering are practiced.3 There is both a demand and opportunities to modernize the system to be more inclusive and to better meet the needs and interests of an increasingly diverse student body pursuing a broad spectrum of careers in a world in which labor markets, funding sources, and institutional policies are undergoing rapid change.4
As a starting point for your thoughts, we ask you to consider a set of competencies, described in the following sections, that might serve as core educational elements or goals at both the master’s and Ph.D. levels. These core educational elements would be the foundation for framing programmatic and logistic standards and considerations, such as program structure, curriculum, and how to enhance diversity within the scientific enterprise. We would like to know if the community, writ large, agrees with these core educational goals going forward or whether they should be adjusted to better reflect the context and needs of all 21st-century STEM graduate students. We would value your ideas on what might be missing from these lists, and what additional knowledge, experiences, and skills should be expected of all students. We also ask for your input on other questions
___________________
3 National Academies of Sciences, Engineering, and Medicine. 2016. Developing a national STEM workforce strategy: A workshop summary. Washington, DC: The National Academies Press. doi: 10.17226/21900.
4 National Science Foundation. 2016. The National Science Foundation strategic framework for investments in Graduate Education FY 2016-FY 2020. NSF-16074. Arlington, VA. Available: www.nsf.gov/pubs/2016/nsf16074/nsf16074.pdf.
we are pondering, listed at the end of the document, that represent focus areas for the eventual development of our report and recommendations.
Many master’s programs are characterized by flexibility and adaptability to the changing nature of scientific disciplines and to workforce demands, and they often attempt to integrate the physical, biological, and social sciences, and even the humanities and arts. With a shorter time to degree than the Ph.D., and because many students fund their own master’s degree program, institutions often establish and adapt master’s programs to respond to workforce demands (sometimes in partnership with industry), and to anticipate emerging interdisciplinary fields.
To find a vision for core educational elements of master’s degrees, the Committee referred to the Council of Graduate School’s (CGS’s) Alignment Framework for the Master’s Degree. This alignment framework was the product of a year-long dialogue that included 150 graduate school deans.5 Of the three defining characteristics of master’s degree programs, the section on competencies describes four developmental dimensions that graduate school deans believe should be common among all or most master’s degree programs:
There is a consensus among graduate education leaders and faculty on U.S. university campuses that the education that Ph.D. students receive should at a
___________________
5 Council of Graduate Schools. 2016. The alignment framework for the master’s degree. Washington, DC. Available: http://cgsnet.org/january-2017-gradedge.
minimum provide them the ability to conduct original scientific research and to enhance their capacity to acquire new data, information, and knowledge. That is, the core coursework and other intensive experiences in the classroom and laboratory should prepare students to discover new knowledge, understand the implications of the new knowledge for both the scientific discipline and society at large, and communicate the impact of the research to their peers and the broader public. Taken together, the core educational elements would establish the STEM Ph.D. educational mission: stimulate curiosity; develop intellectual capacity to recognize, formulate, and communicate a complex problem; create multidimensional, quantitative approaches toward its solution; discover knowledge that advances understanding; and communicate the impact of the research to peers and the broader public.
Based on the input and ideas received to date, the Committee is considering some core elements of a quality Ph.D. education:
Are these effective/appropriate core educational elements for the 21st century, or should they be modified to increase the probability of successful careers for all students? The Committee looks forward to your comments and suggestions.
The committee also seeks your input on several issues that have arisen during our deliberations to date.
You may submit your feedback online at http://nas.edu/GradEdInput by September 22, 2017, or you may submit general comments via e-mail to STEMGradEd@nas.edu.
The Committee on Revitalizing Graduate STEM Education for the 21st Century has received support from the following sponsors: