Previous Chapter: 8 Looking Ahead
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.

Appendix A

References

Aguilar-Gaxiola, S., S. M. Ahmed, A. Anise, A. Azzahir, K. E. Baker, A. Cupito, M. Eder, T. D. Everette, K. Erwin, M. Felzien, E. Freeman, D. Gibbs, E. Greene-Moton, S. Hernández-Cancio, A. Hwang, F. Jones, G. Jones, M. Jones, D. Khodyakov, J. L. Michener, B. Milstein, D. S. Oto-Kent, M. Orban, B. Pusch, M. Shah, M. Shaw, J. Tarrant, N. Wallerstein, J. M. Westfall, and R. Zaldivar. 2022. Assessing Meaningful Community Engagement: A Conceptual Model to Advance Health Equity Through Transformed Systems for Health: Organizing Committee for Assessing Meaningful Community Engagement in Health & Health Care Programs & Policies. NAM Perspectives 2022. Commentary. Washington DC: National Academy of Medicine. https://doi.org/10.31478/202202c.

Alberio, R., T. Kobayashi, and M. A. Surani. 2021. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 16(5):1078–1092.

Brinster, R. L. 2002. Germline stem cell transplantation and transgenesis. Science 296(5576):2174–2176. https://doi.org/10.1126/science.1071607.

CDC (Centers for Disease Control and Prevention). 1997. Principles of community engagement. CDC/ATSDR Committee on Community Engagement.

CDC. 2022. 2020 Assisted reproductive technology fertility clinic and national summary report. U.S. Department of Health and Human Services.

Clarke, L. 2023. This biohacking company is using a crypto city to test controversial gene therapies. MIT Technology Review. https://www.technologyreview.com/2023/02/13/1068330/minicircle-prospera-honduras-biohacking-follistatin-gene-therapy/

Clouthier, D. E., M. R. Avarbock, S. D. Maika, R. E. Hammer, and R. L. Brinster. 1996. Rat spermatogenesis in mouse testis. Nature 381:418–421. https://doi.org/10.1038/381418a0.

Domar, A. D., P. C. Zuttermeister, and R. Friedman. 1993. The psychological impact of infertility: A comparison with patients with other medical conditions. Journal of Psychosomatic Obstetrics and Gynaecology 14(Suppl):45–52.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.

Goldmann, J. M., V. B. Seplyarskiy, W. S. Wong, T. Vilboux, P. B. Neerincx, D. L. Bodian, B. D. Solomon, J. A. Veltman, J. F. Deeken, C. Gilissen, and J. E. Niederhuber. 2018. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nature Genetics 50(4):487–492. https://doi.org/10.1038/s41588-018-0071-6.

Goriely, A. 2016. Decoding germline de novo point mutations. Nature Genetics 48(8):823–824. https://doi.org/10.1038/ng.3629.

Gruhn, W. H., W. W. C. Tang, S. Dietmann, J. P. Alves-Lopes, C. A. Penfold, F. C. K. Wong, N. B. Ramakrishna, and M. A. Surani. 2023. Epigenetic resetting in the human germ line entails histone modification remodeling. Science Advances 9(3):eade1257. https://doi.org/10.1126/sciadv.ade1257.

Gyobu-Motani, S., Y. Yabuta, K. Mizuta, Y. Katou, I. Okamoto, M. Kawasaki, A. Kitamura, T. Tsukiyama, C. Iwatani, H. Tsuchiya, T. Tsujimura, T. Yamamoto, T. Nakamura, and M. Saitou. 2023. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. The EMBO Journal 42(9):e112962. https://doi.org/10.15252/embj.2022112962.

Handel, M. A., J. J. Eppig, and J. C. Schimenti. 2014. Applying “gold standards” to in-vitro-derived germ cells. Cell 157(6):1257–1261. https://doi.org/10.1016/j.cell.2014.05.019.

Hasaart, K. A. L., F. Manders, J. Ubels, M. Verheul, M. J. van Roosmalen, N. M. Groenen, R. Oka, E. Kuijk, S. M. C. de S. Lopes, and R. van Boxtel. 2022. Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells in vivo. iScience 25(2):103736. https://doi.org/10.1016/j.isci.2022.103736.

Hayashi, K., O. Hikabe, Y. Obata, and Y. Hirao. 2017. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nature Protocols 12(9):1733–1744. https://doi.org/10.1038/nprot.2017.070.

Hikabe, O., N. Hamazaki, G. Nagamatsu, Y. Obata, Y. Hirao, N. Hamada, S. Shimamoto, T. Imamura, K. Nakashima, M. Saitou, and K. Hayashi. 2016. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303. https://doi.org/10.1038/nature20104.

Hill, P. W. S., H. G. Leitch, C. E. Requena, Z. Sun, R. Amouroux, M. Roman-Trufero, M. Borkowska, J. Terragni, R. Vaisvila, S. Linnett, H. Bagci, G. Dharmalingham, V. Haberle, B. Lenhard, Y. Zheng, S. Pradhan, and P. Hajkova, P. 2018. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555(7696):322–396. https://doi.org/10.1038/nature25964.

Hua, R., and M. Liu. 2021. Sexual dimorphism in mouse meiosis. Frontiers in Cell and Developmental Biology 9. https://www.frontiersin.org/articles/10.3389/fcell.2021.670599.

Hwang, Y. S., S. Suzuki, Y. Seita, J. Ito, Y. Sakata, H. Aso, K. Sato, B. P. Hermann, and K. Sasaki. 2020. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nature Communications 11(1):Article 5656. https://doi.org/10.1038/s41467-020-19350-3.

Irie, N., L. Weinberger, W. W. C. Tang, T. Kobayashi, S. Viukov, Y. S. Manor, S. Dietmann, J. H. Hanna, and M. A. Surani. 2015. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1):253–268. https://doi.org/10.1016/j.cell.2014.12.013.

Ishii, T., and Saitou, M. 2017. Promoting in vitro gametogenesis research with a social understanding. Trends in Molecular Medicine 23(11):P985–P988. https://doi.org/10.1016/j.molmed.2017.09.006.

Kanatsu-Shinohara, M., N. Ogonuki, K. Inoue, H. Miki, A. Ogura, S. Toyokuni, and T. Shinohara. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction 69(2):612–616. https://doi.org/10.1095/biolreprod.103.017012.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.

Kobayashi, T., H. Zhang, W. W. C. Tang, N. Irie, S. Withey, D. Klisch, A. Sybirna, S. Dietmann, D. A. Contreras, R. Webb, C. Allegrucci, R. Alberio, and M. A. Surani. 2017. Principles of early human development and germ cell program from conserved model systems. Nature 546(7658):416–420. https://doi.org/10.1038/nature22812.

Kobayashi, T., A. Castillo-Venzor, C. A. Penfold, M. Morgan, N. Mizuno, W. W. C. Tang, Y. Osada, M. Hirao, F. Yoshida, H., Sato, H. Nakauchi, M. Hirabayashi, and M. A. Surani. 2021. Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. Cell Reports 37(2):109812. https://doi.org/10.1016/j.celrep.2021.109812.

Kojima, Y., K. Sasaki, S. Yokobayashi, Y. Sakai, T. Nakamura, Y. Yabuta, F. Nakaki, S. Nagaoka, K. Woltjen, A. Hotta, T. Yamamoto, and M. Saitou. 2017. Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21(4):517–532.e5. https://doi.org/10.1016/j.stem.2017.09.005.

Kubota, H., M. R. Avarbock, and R. L. Brinster. 2004. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences 101(47):16489–16494. https://doi.org/10.1073/pnas.0407063101.

Kuijk, E., M. Jager, B. van der Roest, M. D. Locati, A. Van Hoeck, J. Korzelius, R. Janssen, N. Besselink, S. Boymans, R. van Boxtel, and E. Cuppen. 2020. The mutational impact of culturing human pluripotent and adult stem cells. Nature Communications 11(1):2493. https://doi.org/10.1038/s41467-020-16323-4.

Lei, Q., X. Lai, J. Eliveld, S. M. Chuva de Sousa Lopes, A. M. M. van Pelt, and G. Hamer. 2020. In vitro meiosis of male germline stem cells. Stem Cell Reports 15(5):1140–1153. https://doi.org/10.1016/j.stemcr.2020.10.006.

Maher, G. J., S. J. McGowan, E. Giannoulatou, C. Verrill, A. Goriely, and A. O. M. Wilkie. 2016. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proceedings of the National Academy of Sciences 113(9):2454–2459. https://doi.org/10.1073/pnas.1521325113.

Maher, G. J., H. K. Ralph, Z. Ding, N. Koelling, H. Mlcochova, E. Giannoulatou, P. Dhami, D. S. Paul, S. H. Stricker, S. Beck, G. McVean, A. O. M. Wilkie, and A. Goriely. 2018. Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Research 28(12):1779–1790. https://doi.org/10.1101/gr.239186.118.

Marks, P. 2019. The FDA’s regulatory framework for chimeric antigen receptor-T cell therapies. Clinical and Translational Science 12(5):428–430. https://doi.org/10.1111/cts.12666.

Martyn, I., T. Y. Kanno, A. Ruzo, E. D. Siggia, and A. H. Brivanlou. 2018. Self-organization of a human organizer by combined WNT and nodal signalling. Nature 558(7708):132–135. https://doi.org/10.1038/s41586-018-0150-y.

Meyer, M. N., T. Tan, D. J. Benjamin, D. Laibson, and P. Turley. 2023. Public views on polygenic screening of embryos. Science 379(6632):541–543. https://doi.org/10.1126/science.ade1083.

Mizuta, K., Y. Katou, B. Nakakita, A. Kishine, Y. Nosaka, S. Saito, C. Iwatani, H. Tsuchiya, I. Kawamoto, M. Nakaya, T. Tsukiyama, M. Nagano, Y. Kojima, T. Nakamura, Y. Yabuta, A. Horie, M. Mandai, H. Ohta, and M. Saitou. 2022. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. The EMBO Journal 41(18):e110815. https://doi.org/10.15252/embj.2022110815.

Murakami, K., N. Hamazaki, N. Hamada, G. Nagamatsu, I. Okamoto, H. Ohta, Y. Nosaka, Y. Ishikura, T. S. Kitajima, Y. Semba, Y. Kunisaki, F. Arai, K. Akashi, M. Saitou, K. Kato, and K. Hayashi. 2023. Generation of functional oocytes from male mice in vitro. Nature 615(7954):900–906. https://doi.org/10.1038/s41586-023-05834-x.

Nagano, M., J. R. McCarrey, and R. L. Brinster. 2001. Primate spermatogonial stem cells colonize mouse testes. Biology of Reproduction 64(5):1409–1416. https://doi.org/10.1095/biolreprod64.5.1409.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.

Nagano, M., P. Patrizio, and R. L. Brinster. 2002. Long-term survival of human spermatogonial stem cells in mouse testes. Fertility and Sterility 78(6):1225–1233. https://doi.org/10.1016/S0015-0282(02)04345-5.

Ogawa, T., I. Dobrinski, M. R. Avarbock, and R. L. Brinster. 2000. Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Medicine 6(1):29–34. https://doi.org/10.1038/71496.

Ohinata, Y., H. Ohta, M. Shigeta, K. Yamanaka, T. Wakayama, and M. Saitou. 2009. A signaling principle for the specification of the germ cell lineage in mice. Cell 137(3):571–584. https://doi.org/10.1016/j.cell.2009.03.014.

Orwig, K. E., T. Shinohara, M. R. Avarbock, and R. L. Brinster. 2002. Functional analysis of stem cells in the adult rat testis. Biology of Reproduction 66(4):944–949. https://doi.org/10.1095/biolreprod66.4.944.

Saitou, M., and K. Hayashi. 2021. Mammalian in vitro gametogenesis. Science 374(6563):eaaz6830. https://doi.org/10.1126/science.aaz6830.

SART (Society of Assisted Reproductive Technology). 2023. Preliminary National Summary Report for 2021. https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?reportingYear=2021.

Sasaki, K., and M. Sangrithi. 2023. Developmental origins of mammalian spermatogonial stem cells: New perspectives on epigenetic regulation and sex chromosome function. Molecular and Cellular Endocrinology 573:111949. https://doi.org/10.1016/j.mce.2023.111949.

Sasaki, K., S. Yokobayashi, T. Nakamura, I. Okamoto, Y. Yabuta, K. Kurimoto, H. Ohta, Y. Moritoki, C. Iwatani, H. Tsuchiya, S. Nakamura, K. Sekiguchi, T. Sakuma, T. Yamamoto, T. Mori, K. Woltjen, M. Nakagawa, T. Yamamoto, K. Takahashi, S. Yamanaka, and M. Saitou. 2015. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17(2):178–194. https://doi.org/10.1016/j.stem.2015.06.014.

Sasaki, K., T. Nakamura, I. Okamoto, Y. Yabuta, C. Iwatani, H. Tsuchiya, Y. Seita, S. Nakamura, N. Shiraki, T. Takakuwa, T. Yamamoto, and M. Saitou. 2016. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Developmental Cell 39(2):169–185. https://doi.org/10.1016/j.devcel.2016.09.007.

Seita, Y., Cheng, J. R. McCarrey, N. Yadu, I. H. Cheeseman, A. Bagwell, C. N. Ross, I. Santana Toro, L.-H. Yen, S. Vargas, C. S. Navara, B. P. Hermann, and K. Sasaki. 2023. Efficient generation of marmoset primordial germ cell–like cells using induced pluripotent stem cells. eLife 12, e82263. https://doi.org/10.7554/eLife.82263.

Shinohara, T., M. Kato, M. Takehashi, J. Lee, S. Chuma, N. Nakatsuji, M. Kanatsu-Shinohara, and M. Hirabayashi. 2006. Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proceedings of the National Academy of Sciences 103(37):13624–13628. https://doi.org/10.1073/pnas.0604205103.

Tang, W. W. C., S. Dietmann, N. Irie, H. G. Leitch, V. I. Floros, C. R. Bradshaw, J. A. Hackett, P. F. Chinnery, and M. A. Surani. 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161(6):1453–1467. https://doi.org/10.1016/j.cell.2015.04.053.

Tang, W. W. C., T. Kobayashi, N. Irie, S. Dietmann, and M. A. Surani. 2016. Specification and epigenetic programming of the human germ line. Nature Reviews Genetics 17(10):585–600. https://doi.org/10.1038/nrg.2016.88.

Thompson, O., F. von Meyenn, Z. Hewitt, J. Alexander, A. Wood, R. Weightman, S. Gregory, F. Krueger, S. Andrews, I. Barbaric, P. J. Gokhale, H. D. Moore, W. Reik, M. Milo, S. Nik-Zainal, K. Yusa, and P. W. Andrews. 2020. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nature Communications 11(1):1528. https://doi.org/10.1038/s41467-020-15271-3.

Tran, K. T. D., H. Valli-Pulaski, A. Colvin, and K. E. Orwig. 2022. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies. Biology of Reproduction 107(2):382–405. https://doi.org/10.1093/biolre/ioac072.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.

Warmflash, A., B. Sorre, F. Etoc, E. D. Siggia, and A. H. Brivanlou. 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nature Methods 11(8):847–854. https://doi.org/10.1038/nmeth.3016.

WHO (World Health Organization). 2023. Infertility prevalence estimates: 1990–2021. https://www.who.int/publications/i/item/978920068315.

Yamaji, M., Y. Seki, K. Kurimoto, Y. Yabuta, M. Yuasa, M. Shigeta, K. Yamanaka, Y. Ohinata, and M. Saitou. 2008. Critical function of PRDM14 for the establishment of the germ cell lineage in mice. Nature Genetics 40(8):1016–1022. https://doi.org/10.1038/ng.186.

Yamashiro, C., K. Sasaki, Y. Yabuta, Y. Kojima, T. Nakamura, I. Okamoto, S. Yokobayashi, S. Murase, Y. Ishikura, K. Shirane, H. Sasaki, T. Yamamoto, and M. Saitou. 2018. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362(6412):356–360. https://doi.org/10.1126/science.aat1674.

Yoshino, T., T. Suzuki, G. Nagamatsu, H. Yabukami, M. Ikegaya, M. Kishima, H. Kita, T. Imamura, K. Nakashima, R. Nishinakamura, M. Tachibana, M. Inoue, Y. Shima, K. Morohashi, and K. Hayashi. 2021. Generation of ovarian follicles from mouse pluripotent stem cells. Science 373(6552):eabe0237. https://doi.org/10.1126/science.abe0237.

Zhou, Q., M. Wang, Y. Yuan, X. Wang, R. Fu, H. Wan, M. Xie, M. Liu, X. Guo, Y. Zheng, G. Feng, Q. Shi, X.-Y. Zhao, J. Sha, and Q. Zhou. 2016. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340. https://doi.org/10.1016/j.stem.2016.01.0.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.

This page intentionally left blank.

Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
Page 117
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
Page 118
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
Page 119
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
Page 120
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
Page 121
Suggested Citation: "Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
Page 122
Next Chapter: Appendix B: Workshop Task and Agenda
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.