Abdel-Maksoud, H. (2024). Combining UAV-LiDAR and UAV-Photogrammetry for Bridge Assessment and Infrastructure Monitoring, Arabian Journal of Geosciences, Vol. 17: 144.
Abdullah, Q. (2023). The ASPRS Positional Accuracy Standards, Edition 2: The Geospatial Mapping Industry Guide to Best Practices, Photogrammetric Engineering and Remote Sensing, Vol. 89: 581–588.
Ahmad, H., K. N. A. Maulud, O. A. Karim, and F. A. Mohd. (2021). Assessment of Erosion and Hazard in the Coastal Areas of Selangor, Geografia: Malaysian Journal of Society and Space, Vol. 17: 14–30.
Ai, C. (2022). A Pavement Marking Inventory and Retroreflectivity Condition Assessment Method Using Mobile LiDAR, Report No. 22-030, Massachusetts DOT. https://www.mass.gov/doc/a-pavement-marking-inventory-and-retroreflectivity-condition-assessment-method-using-mobile-Lidar-final-report/download.
Ai, C., and Y. (J.) Tsai. (2016). Automated Sidewalk Assessment Method for Americans with Disabilities Act Compliance Using Three-Dimensional Mobile Lidar, Transportation Research Record, No. 2542: 20–25. https://doi.org/10.3141/2542-04.
Ajith, A., K. A. Francis, and R. J. Pillai. (2024). Evaluation of Pore-Pressure Variation and Slope Stability on Terraced Cultivation Using Physics-Based Landslide Susceptibility Model, Geomorphology, Vol. 450: 109081.
Alberti, S., A. Senogles, K. Kingen, A. Booth, P. Castro, J. DeKoekkoek, K. Glover-Cutter, C. Mohney, M. Olsen, and B. Leshchinsky. (2020). The Hooskanaden Landslide: Historic and Recent Surge Behavior of an Active Earthflow on the Oregon Coast, Landslides, Vol. 17: 2589–2602. https://doi.org/10.1007/s10346-020-01466-8.
Alzraiee, H., A. Shams, A. Rahim, N. C. Villalobos, and A. Pande. (2024). Road Cross Slope Evaluation Using Surveying and LiDAR Techniques, Construction Research Congress 2024, ASCE.
Amatya, D., C. Trettin, S. Panda, and H. Ssegane. (2013). Application of LiDAR Data for Hydrologic Assessments of Low-Gradient Coastal Watershed Drainage Characteristics, Journal of Geographic Information System, Vol. 5, No. 2: 17.
American Society for Photogrammetry and Remote Sensing (ASPRS). (2024). ASPRS Positional Accuracy Standards for Digital Geospatial Data.
Antah, F. H., M. A. Khoiry, K. N. A. Maulud, and A. Abdullah. (2021). Perceived Usefulness of Airborne LiDAR Technology in Road Design and Management: A Review, Sustainability, Vol. 13: 11773.
Arghavanian, A., and U. M. Leloğlu. (2024). Extraction and Classification of Channels from LiDAR in Plains by Channel Tracking, Environmental Modelling and Software, Vol. 171: 105838.
Arshad, K. I. B. A. (2016). Development of a New Lidar Database Management System Using Open Source Software, M.Sc. thesis, Universiti Putra Malaysia.
Azizi, Z., A. Najafi, and S. Sadeghian. (2014). Forest Road Detection Using LiDAR Data, Journal of Forestry Research, Vol. 25: 975–980. https://link.springer.com/content/pdf/10.1007/s11676-014-0544-0.pdf.
Babbel, B. J., M. J. Olsen, E. Che, B. A. Leshchinsky, C. Simpson, and J. Dafni. (2019). Evaluation of Uncrewed Aircraft Systems’ Lidar Data Quality, ISPRS International Journal of Geo-Information, Vol. 8, No. 12: 532. https://doi.org/10.3390/ijgi8120532.
Bao, Z., S. Hossain, H. Lang, and X. Lin. (2023). A Review of High-Definition Map Creation Methods for Autonomous Driving, Engineering Applications of Artificial Intelligence, Vol. 122: 106125.
Beck, J., R. Arvin, S. Lee, A. Khattak, and S. Chakraborty. (2023). Automated Vehicle Data Pipeline for Accident Reconstruction: New Insights from LiDAR, Camera, and Radar Data, Accident Analysis and Prevention, Vol. 180: 106923.
Behroozpour, B., P. A. M. Sandborn, M. C. Wu, and B. E. Boser. (2017). Lidar System Architectures and Circuits, IEEE Communications Magazine, Vol. 55, No. 10: 135–142.
Beland, M., G. Parker, B. Sparrow, D. Harding, L. Chasmer, S. Phinn, A. Antonarakis, and A. Strahler. (2019). On Promoting the Use of Lidar Systems in Forest Ecosystem Research, Forest Ecology and Management, Vol. 450: 117484.
Bertini, F. (2023). The Power of HDF5: Revolutionizing Lidar Data Labeling and Recording. https://www.linkedin.com/pulse/power-hdf5-revolutionizing-Lidar-data-labeling-frank-bertini/.
Biber, P., and S. Fleck. (2009). The Nifty Lidar: Efficient 3D Point Cloud Acquisition for Mobile Robot Mapping, Robotics and Autonomous Systems, Vol. 57, No. 10: 1021–1030.
Bolourian, N., M. M. Soltani, A. H. Albahari, and A. Hammad. (2017). High-Level Framework for Bridge Inspection Using LiDAR-Equipped UAV, Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC), Tribun EU, Brno.
Buján, S., J. Guerra-Hernández, E. González-Ferreiro, and D. Miranda. (2021). Forest Road Detection Using LiDAR Data and Hybrid Classification, Remote Sensing, Vol. 13, No. 3. https://www.mdpi.com/2072-4292/13/3/393.
Burns, W. J., and I. P. Madin. (2009). Protocol for Inventory Mapping of Landslide Deposits from Light Detection and Ranging (Lidar) Imagery, Oregon Department of Geology and Mineral Industries, Special Paper 42. https://www.ci.oswego.or.us/sites/default/files/fileattachments/publicworks/webpage/21266/2009_dogami_special_paper_42-protocol.pdf.
Cambridge Systematics, Inc., Boston Strategies International, Inc., Gordon Proctor and Associates, and M. J. Markow. (2010). NCHRP Report 666: Target-Setting Methods and Data Management to Support Performance-Based Resource Allocation by Transportation Agencies- Volume I: Research Report, and Volume II: Guide for Target Setting and Data Management, Transportation Research Board of the National Academies, Washington, DC. https://doi.org/10.17226/14429.
Carlson, P., et al. (2017). Advancing Innovative High-Speed Remote-Sensing Highway Infrastructure Assessment Using Emerging Technologies: Technical Report, FHWA/TX-16/0-6869-1, Texas A&M Transportation Institute. https://rosap.ntl.bts.gov/view/dot/32077/dot_32077_DS1.pdf.
Castro, M., L. Iglesias, J. A. Sánchez, and L. Ambrosio. (2011). Sight Distance Analysis of Highways Using GIS Tools, Transportation Research Part C, Emerging Technologies, Vol. 19: 997–1005.
Chang, J. C., M. K. Tsai, D. J. Findley, and C. M. Cunningham. (2012). Infrastructure Investment Protection with LiDAR. No. FHWA/NC/2012-15. North Carolina State University. Institute for Transportation Research & Education, 2012. https://rosap.ntl.bts.gov/view/dot/25075.
Charron, N., S. Phillips, and S. L. Waslander. (2018). De-noising of Lidar Point Clouds Corrupted by Snowfall, Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), IEEE.
Che, E., and M. J. Olsen. (2019). An Efficient Framework for Mobile Lidar Trajectory Reconstruction and Mo-Norvana Segmentation, Remote Sensing, Vol. 11, No. 7: 836. https://doi.org/10.3390/rs11070836.
Che, E., J. Jung, and M. J. Olsen. (2019). Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: State of the Art Review, Sensors, Vol. 19, No. 4: 810. https://doi.org/10.3390/s19040810.
Che, E., M. J. Olsen, and J. Jung. (2021). Efficient Segment-Based Ground Filtering and Adaptive Road Detection from Mobile Lidar Data, International Journal of Remote Sensing, Vol. 42, No. 10: 3633–3659. https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1871095.
Che, E., M. J. Olsen, C. E. Parrish, and J. Jung. (2019). Pavement Marking Retroreflectivity Estimation and Evaluation Using Mobile Lidar Data, Photogrammetric Engineering and Remote Sensing, Vol. 85, No. 8: 573–583. https://doi.org/10.14358/PERS.85.8.573.
Che, E., M. J. Olsen, and D. Trejo. (2024). Evaluation of Curb Ramp Compliance: Review of Tools, Methods, and Time to Develop Error Tolerances, ODOT SPR 844 Final Report.
Che, E., M. J. Olsen, and Y. Turkan. (2023). Automatic Extraction of Curbs and Curb Ramps from Mobile Lidar Point Clouds, Proceedings of ASCE International Conference on Computing in Civil Engineering, i3CE 2023, ASCE, Corvallis, OR.
Chen, W., X. Li, Y. Wang, G. Chen, and S. Liu. (2014). Forested Landslide Detection Using LiDAR Data and the Random Forest Algorithm: A Case Study of the Three Gorges, China, Remote Sensing of Environment, Vol. 152: 291–301.
Chen, J., Q. Su, Y. Niu, Z. Zhang, and J. Liu. (2023). A Handheld LiDAR-Based Semantic Automatic Segmentation Method for Complex Railroad Line Model Reconstruction, Remote Sensing, Vol. 15, No. 18: 4504.
Chin, A., and M. J. Olsen. (2015). Evaluation of Technologies for Road Profile Capture, Analysis, and Evaluation, Journal of Surveying Engineering, Vol. 141, No. 1:04014011-(1-13), ASCE. http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000134.
Choné, G., P. M. Biron, T. Buffin-Bélanger, I. Mazgareanu, J. C. Neal, and C. C. Sampson. (2021). An Assessment of Large-Scale Flood Modelling Based on LiDAR Data, Hydrological Processes, Vol. 35, No. 8: e14333.
Collins, B. D., and N. Sitar. (2004). Application of High Resolution 3D Laser Scanning to Slope Stability Studies, 39th Annual Symposium on Engineering Geology and Geotechnical Engineering, Butte, MT.
Correia, D. A., G. H., and M. Menendez. (2017). Automated and Connected Vehicles: Effects on Traffic, Mobility and Urban Design. International Journal of Transportation Science and Technology 6, No. 1 (2017): iii-iv. https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/169532/1-s2.0-S2046043017000259-main.pdf.
Davis, B., and M. Donath. (2014). Development of a Sensor Platform for Roadway Mapping: Part A-Road Centerline and Asset Management. No. CTS 14-09. University of Minnesota. Center for Transportation Studies. https://rosap.ntl.bts.gov/view/dot/32161.
Delaware DOT. (2013). Alternative Mitigation: Reedy Island Cart Road Phase II, U.S. Route 301, Delaware Department of Transportation. https://deldot.gov/environmental/archaeology/us301/pdf/cart_road/chapter_2_implementation.pdf.
Delaware DOT. (2020). Erosion and Sediment Control Design Guide, Delaware Department of Transportation. https://deldot.gov/Business/drc/pdfs/stormwater/guidelines/e_s_design_guide.pdf.
Delaware DOT. (2022). Electronic Speed Safety Program, Program Report for CY 2022. Delaware Department of Transportation, 2022. https://deldot.gov/Programs/DSHSP/pdfs/CY%202022%20Automated%20Speed%20Enforcement%20Report_Final.pdf.
De Ryck, M., M. Versteyhe, and F. Debrouwere. (2020). Automated Guided Vehicle Systems, State-of-the-Art Control Algorithms and Techniques. Journal of Manufacturing Systems, Vol. 54: 152–173.
Department of Transport and Main Roads. (2023a). Guideline: Mobile Laser Scanning, The State of Queensland, Department of Transport and Main Roads. https://www.tmr.qld.gov.au/business-industry/Technical-standards-publications/Surveying-support-documents.aspx.
Department of Transport and Main Roads. (2023b). Mobile Lidar Technical Guideline, The State of Queensland, Department of Transport and Main Roads. https://www.tmr.qld.gov.au/business-industry/Technical-standards-publications/Surveying-support-documents.aspx.
Desai, J., J. Liu, R. Hainje, R. Oleksy, A. Habib, and D. Bullock. (2021). Assessing Vehicle Profiling Accuracy of Handheld LiDAR Compared to Terrestrial Laser Scanning for Crash Scene Reconstruction, Sensors, Vol. 21: 8076.
Di Stefano, F., S. Chiappini, A. Gorreja, M. Balestra, and R. Pierdicca. (2021). Mobile 3D Scan LiDAR: A Literature Review, Geomatics, Natural Hazards and Risk, Vol. 12, No. 1: 2387–2429.
Dou, J., A. P. Yunus, D. T. Bui, M. Sahana, C.-W. Chen, Z. Zhu, W. Wang, and B. T. Pham. (2019). Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM, Remote Sensing, Vol. 11: 638.
DriveOhio. (n.d.). Automated and Connected Vehicle Program, DriveOhio. https://drive.ohio.gov/programs/av-cv.
Du, L., G. W. McCarty, X. Li, X. Zhang, M. C. Rabenhorst, M. W. Lang, Z. Zou, X. Zhang, and A. L. Hinson. (2024). Drainage Ditch Network Extraction from LiDAR Data Using Deep Convolutional Neural Networks in a Low Relief Landscape, Journal of Hydrology, Vol. 628: 130591.
Duffell, C. G., D. M. Rudrum, and M. R. Willis. (2006). Detection of Slope Instability Using 3D LiDAR Modelling, GeoCongress 2006.
Dunham, L., J. Wartman, M. J. Olsen, M. S. O’Banion, and K. Cunningham. (2017). Rockfall Activity Index (RAI): A LiDAR-Derived, Morphology-Based Hazard Assessment System, Engineering Geology, Vol. 221: 184–192. https://doi.org/10.1016/j.enggeo.2017.03.009.
Erdal, K., and H. B. Makineci. (2021). Documentation of Cultural Heritage with Backpack Lidar Usage on Photogrammetric Purpose. Türkiye Lidar Dergisi, Vol. 3, No. 1: 1–6.
Esfandabadi, A. S. (2018). Highway Cross Slope Measurement Using Airborne and Mobile LiDAR, Ph.D. dissertation, Clemson University.
Fareed, N., and C.-K. Wang. (2021). Accuracy Comparison on Culvert-Modified Digital Elevation Models of DSMA and BA Methods Using ALS Point Clouds, International Journal of Geo-Information, Vol. 10: 254.
Federal Aviation Administration (FAA) and Federal Highway Administration (FHWA). (2023). Updated Fact Sheet (2023) on State and Local Regulation of Unmanned Aircraft Systems (UAS), U.S. Department of Transportation, Office of the Secretary of Transportation. https://www.faa.gov/sites/faa.gov/files/uas/public_safety_gov/public_safety_toolkit/FAA%20UAS%20Fact%20Sheet.pdf.
Federal Highway Administration (FAA). (2021). Highway Performance Monitoring System (HPMS) Field Manual, U.S. Department of Transportation, Federal Highway Administration.
Fernandez-Diaz, J. C., A. Singhania, J. Caceres, K. C. Slatton, M. Starek, and R. Kumar. (2007). An Overview of LiDAR Point Cloud Processing Software, GEM Center Report No. Rep_2007-12-001, University of Florida.
Fernandez-Diaz, J. C., and A. S. Cohen. (2020). Whose Data Is It Anyway? Lessons in Data Management and Sharing from Resurrecting and Repurposing LiDAR Data for Archaeology Research in Honduras, Journal of Computer Applications in Archaeology, Vol. 3.
Fukuoka, T., T. Minami, and M. Fujiu. (2024). Base Study of Bridge Inspection by Modeling Touch Information Using Light Detection and Ranging, Applied Sciences, Vol. 14: 1449.
García-Gutiérrez, J., F. Martínez-Álvarez, and J. C. Riquelme. (2010). Using Remote Data Mining on LIDAR and Imagery Fusion Data to Develop Land Cover Maps, Trends in Applied Intelligent Systems, 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Cordoba, Spain, June 1–4, 2010, Proceedings, Part I, Vol. 23: 378–387.
García-López, S., M. Vélez-Nicolás, P. Zarandona-Palacio, A. C. Curcio, V. Ruiz-Ortiz, and L. Barbero. (2023). UAV-Borne LiDAR Revolutionizing Groundwater Level Mapping, Science of The Total Environment, Vol. 859: 160272.
Gargoum, S. A., and K. El-Basyouny. (2019). A Literature Synthesis of LiDAR Applications in Transportation: Feature Extraction and Geometric Assessments of Highways, GIScience and Remote Sensing, Vol. 56, No. 6: 864–893. https://doi.org/10.1080/15481603.2019.1581475.
Gargoum, S. A., K. El-Basyouny, and J. Sabbagh. (2018). Assessing Stopping and Passing Sight Distance on Highways Using Mobile LiDAR Data, Journal of Computing in Civil Engineering, Vol. 32: 04018025.
Gargoum, S., and K. El-Basyouny. (2018). Transportation Infrastructure Asset Management Using LiDAR Remote Sensing Technology, International Journal of Trend Research and Development, Vol. 143: 143–152.
Georgia DOT. (2020). GDOT Automated Survey Manual, Georgia Department of Transportation. https://www.dot.ga.gov/PartnerSmart/DesignManuals/SurveyManual/SurveyManual.pdf.
Georgia DOT. (n.d.). GDOT Statewide Location Bureau Lidar Location Per County and District, Georgia Department of Transportation. https://www.dot.ga.gov/DriveSmart/MapsData/Documents/Statewide/GDOTLidarMap.pdf.
Gharaibeh, N., I. Oti, D. Schrank, and J. Zmud. (2017). NCHRP Synthesis 508: Data Management and Governance Practices. Transportation Research Board, Washington, DC. https://nap.nationalacademies.org/catalog/24777/data-management-and-governance-practices.
Ghosh, S., and B. Lohani. (2013). Mining LiDAR Data with Spatial Clustering Algorithms, International Journal of Remote Sensing, Vol. 34: 5119–5135.
Gillins, D. T., M. L. Dennis, and A. Y. Ng. (2022). Surveying and Geomatics Engineering: Principles, Technologies, and Applications, American Society of Civil Engineers.
González-Gómez, K., L. I. R. Rodríguez-Solano, and M. Castro. (2019). Framework for 3D Point Cloud Modelling Aimed at Road Sight Distance Estimations. Remote Sensing 11, No. 23: 2730. https://doi.org/10.3390/rs11232730.
Gouda, M., B. Arantes de Achilles Mello, and K. El-Basyouny. (2021). Automated Object Detection, Mapping, and Assessment of Roadside Clear Zones Using LiDAR Data, Transportation Research Record, No. 2675: 432–448.
Graham, L. (2017). Management of LiDAR Data, in Topographic Laser Ranging and Scanning, CRC Press.
Gupta, A., T. Afrin, E. Scully, and N. Yodo. (2021). Advances of UAVs Toward Future Transportation: The State-of-the-Art, Challenges, and Opportunities, Future Transportation, Vol. 1, No. 2: 326–350. https://www.mdpi.com/2673-7590/1/2/19.
Guan, H., J. Li, S. Cao, and Y. Yu. (2016). Use of Mobile LiDAR in Road Information Inventory: A Review, International Journal of Image and Data Fusion, Vol. 7, No. 3: 219–242. https://doi.org/10.1080/19479832.2016.1188860.
Guenther, G. C., A. G. Cunningham, P. E. LaRocque, and D. J. Reid. (2000). Meeting the Accuracy Challenge in Airborne Lidar Bathymetry, EARSel, Dresden. https://earsel.org/wp-content/uploads/2016/12/01_1_guenther1.pdf.
Hallmark, S. (2003). Use of LIDAR-Based Elevation Data for Highway Drainage Analysis: A Qualitative Assessment, Midwest Transportation Consortium, Iowa State University.
Hare, W., S. Hossain, Y. Lucet, and F. Rahman. (2014). Models and Strategies for Efficiently Determining an Optimal Vertical Alignment of Roads, Computers and Operations Research, Vol. 44: 161–173.
Hartzell, P. J., P. J. Gadomski, C. L. Glennie, D. C. Finnegan, and J. S. Deems. (2015). Rigorous error propagation for terrestrial laser scanning with application to snow volume uncertainty. Journal of Glaciology. 61(230): 1147–1158. https://doi.org/10.3189/2015jog15j031.
Hasan, M. (2019). Exploring the Use of Data from Newer Technologies in Road Design, M.Sc. thesis, Boise State University.
He, H., A. Xu, X. Han, H. Wang, L. Wang, and W. Su. (2023). LiDAR Perception and Evaluation Method for Road Traffic Marking Retroreflection, Transportation Research Record: Journal of the Transportation Research Board, No. 2677: 258–279. https://doi.org/10.1177/03611981221145135.
Heath, Z. (2023). Quality Control Methods Through Pre-Determination of Fields for UsRAP Projects, M.Sc. thesis, University of Kentucky.
Herbert, N., and D. Pacheco. (2015). Using LiDAR for Planning and Designing Engineering Practices, Surveying Technical Note 210–SRVN–01, United States Department of Agriculture.
Holgado-Barco, A., D. Gonzalez-Aguilera, P. Arias-Sanchez, and J. Martinez-Sanchez. (2014). An Automated Approach to Vertical Road Characterization Using Mobile LiDAR Systems: Longitudinal Profiles and Cross-Sections, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 96: 28–37.
Hu, H., T. M. Fernandez-Steeger, M. Dong, H. T. Nguyen, and R. Azzam. (2010). 3D Modeling Using LiDAR Data and Its Geological and Geotechnical Applications, 18th International Conference on Geoinformatics.
Huber, D. (2011). The ASTM E57 file format for 3D imaging data exchange. Proceedings of SPIE. The International Society for Photo-Optical Instrumentation Engineers. https://doi.org/10.1117/12.876555.
Jahanger, Q. K., G. Zimmerman, A. Hadziomerspahic, M. A. Martin, D. N. Sillars, E. H. Ng, and J. Calvo-Amodio. (2023). Economic and Operational Impacts of Three-Dimensional Engineered Models and Automated Machine Guidance on Statewide Roadway Projects, Practice Periodical on Structural Design and Construction, Vol. 28: 05023003.
Jelalian, A.V. (1992). Laser Radar Systems, Artech House, Norwood, MA.
Jiang, A.-L., K. Hsu, B. F. Sanders, and S. Sorooshian. (2023). Topographic Hydro-Conditioning to Resolve Surface Depression Storage and Ponding in a Fully Distributed Hydrologic Model, Advances in Water Resources, Vol. 176: 104449.
JOUAV. (2024). What is LiDAR and How Does It Work? https://www.jouav.com/blog/what-is-Lidar.html.
Jung, J., E. Che, M. J. Olsen, and C. Parrish. (2019). Efficient and Robust Lane Marking Extraction from Mobile Lidar Point Clouds, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 147: 1–18. https://doi.org/10.1016/j.isprsjprs.2018.11.012.
Jung, J., E. Che, M. J. Olsen, C. Parrish, and Y. Turkan. (2024). Instance-Based Clustering of Road Markings with Wear and Occlusion from Mobile Lidar Data, Journal of Computing in Civil Engineering, Vol. 38, No. 4. https://doi.org/10.1061/JCCEE5.CPENG-572.
Jung, J., M. J. Olsen, E. Che, and C. Parrish. (2020). Efficient Extraction and Evaluation of Complex Pavement Markings from Mobile Laser Scan Data, Pacific Northwest Transportation Consortium (PacTrans) Final Project Report.
Jung, J., M. J. Olsen, D. S. Hurwitz, A. G. Kashani, and K. Buker. (2018). 3D Virtual Intersection Sight Distance Analysis Using Lidar Data, Transportation Research Part C, Vol. 86: 563–579. https://doi.org/10.1016/j.trc.2017.12.004.
Kashani, A., M. J. Olsen, C. E. Parrish, and N. Wilson. (2015). A Review of Lidar Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration, Sensors, Vol. 15, No. 11: 28099–28128. https://doi.org/10.3390/s151128099.
Kemeny, J. (2015). Application of Three-Dimensional Laser Scanning for the Identification, Evaluation, and Management of Unstable Highway Slopes, Report No. FHWA-TPF-5 (166), Arizona Department of Transportation.
Khattak, A. J., and H. Shamayleh. (2005). Highway Safety Assessment Through Geographic Information System-Based Data Visualization, Journal of Computing in Civil Engineering, Vol. 19: 407–411.
Kottner, S., M. J. Thali, and D. Gascho. (2023). Using the iPhone’s LiDAR Technology to Capture 3D Forensic Data at Crime and Crash Scenes, Forensic Imaging, Vol. 32: 200535.
Kuang, B., and J. Chen. (2024). Mobile Phone-Based Artificial Intelligence Development for Maintenance Asset Management. No. MPC-24-533. Mountain-Plains Consortium. https://rosap.ntl.bts.gov/view/dot/77215.
Lamas Novoa, D., A. Justo Dominguez, M. Soilán Rodríguez, and B. Riveiro Rodríguez. (2022). 3D Point Cloud to BIM: Automated Application to Define IFC Alignment and Roadway Width Entities from MLS-Acquired LiDAR Data of Mountain Roads, ISPRS Annals of Photogrammetry, Remote Sensing, and Spatial Information Sciences.
Lato, M. J., M. S. Diederichs, D. J. Hutchinson, and R. Harrap. (2012). Evaluating Roadside Rockmasses for Rockfall Hazards Using LiDAR Data: Optimizing Data Collection and Processing Protocols, Natural Hazards, Vol. 60: 831–864.
Lay, U. S., B. Pradhan, Z. B. M. Yusoff, A. F. B. Abdallah, J. Aryal, and H.-J. Park. (2019). Data Mining and Statistical Approaches in Debris-Flow Susceptibility Modelling Using Airborne LiDAR Data, Sensors, Vol. 19: 3451.
Le, N., D. Tran, and R. Sturgill. (2024). Content Analysis of Three-Dimensional Model Technologies and Applications for Construction: Current Trends and Future Directions. Sensors 24, No. 12: 3838. https://www.mdpi.com/1424-8220/24/12/3838.
Lei, G., R. Yao, Y. Zhao, and Y. Zheng. (2021). Detection and Modeling of Unstructured Roads in Forest Areas Based on Visual-2D Lidar Data Fusion, Forests, Vol. 12: 820.
Leshchinsky, B. A., M. J. Olsen, and B. F. Tanyu. (2015). Contour Connection Method for Automated Identification and Classification of Landslide Deposits, Computers and Geosciences, Vol. 74: 27–38.
Lewis, P., C. P. Mc Elhinney, and T. McCarthy. (2012). Lidar Data Management Pipeline: From Spatial Database Population to Web-Application Visualization, Proceedings of the 3rd International Conference on Computing for Geospatial Research and Applications: 1–10.
Li, Y., and J. Ibanez-Guzman. (2020). Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems, IEEE Signal Processing Magazine, Vol. 37, No. 4: 50–61.
Lichti, D. D., and J. Skaloud. (2011). Registration and Calibration. Chapter in Airborne and Terrestrial Laser Scanning, Whittles: Caithness, UK, Editors: Vosselman, G.; Maas, H.G. 2011. https://infoscience.epfl.ch/handle/20.500.14299/63539.
Liu, H., Z. Huang, Q. Zhan, and P. Lin. (2008). A Database Approach to Very Large LiDAR Data Management, The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, Beijing, China, Vol. 37: 463–468.
Liu, B., D. Zhao, and H. Zhang. (2023). Road Classification Using 3D LiDAR Sensor on Vehicle. Measurement Science and Technology 34, No. 6 (2023): 065201. https://iopscience.iop.org/article/10.1088/1361-6501/acc1fd/pdf.
Lohani, B., and S. Ghosh. (2017). Airborne LiDAR Technology: A Review of Data Collection and Processing Systems, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, Vol. 87: 567–579. https://link.springer.com/article/10.1007/s40010-017-0435-9.
Lokugam Hewage, C. N., D. F. Laefer, A.-V. Vo, N.-A. Le-Khac, and M. Bertolotto. (2022). Scalability and Performance of LiDAR Point Cloud Data Management Systems: A State-of-the-Art Review, Remote Sensing, Vol. 14: 5277.
Lopez, S. R., and R. M. Maxwell. (2016). Identifying Urban Features from LiDAR for a High-Resolution Urban Hydrologic Model, JAWRA: Journal of the American Water Resources Association, Vol. 52: 756–768.
Lyu, N., G. Huang, C. Wu, Z. Duan, and P. Li. (2017). Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data, Sensors, Vol. 17: 482.
Ma, Y., Y. Zheng, S. Wang, Y. D. Wong, and S. M. Easa. (2023). A Virtual Method for Optimizing Deployment of Roadside Monitoring Lidars at As-Built Intersections, IEEE Transactions on Intelligent Transportation Systems.
Ma, Y., Y. Zheng, Y. D. Wong, S. M. Easa, and J. Cheng. (2022). A Virtual Procedure for Real-Time Monitoring of Intervisibility Between Conflicting Agents at Intersections Using Point Cloud and Trajectory Data, Transportation Research Part C: Emerging Technologies, Vol. 134: 103486.
Ma, L., Y. Li, J. Li, C. Wang, R. Wang, and M. Chapman. (2018). Mobile Laser Scanned Point-Clouds for Road Object Detection and Extraction: A Review. Remote Sensing, 10, 1531. https://doi.org/10.3390/rs10101531.
Maier, F., J. Mallela, H. N. Torres, J. M. Ruiz, G. K. Chang, and Parsons Brinckerhoff. (2018). Automation in Highway Construction Part II: Design Guidance and Guide Specification Manual. No. FHWA-HRT-16-031. Federal Highway Administration. https://rosap.ntl.bts.gov/view/dot/37554
Majeski, N. (2022). Electronic Speed Safety Program: Program Report for CY 2022, Delaware Department of Transportation. https://deldot.gov/Programs/DSHSP/pdfs/CY%202022%20Automated%20Speed%20Enforcement%20Report_Final.pdf.
Mallela, J., and A. Bhargava. (2021). Advancing BIM for Infrastructure: National Strategic Roadmap, FHWA-HRT-21-064, U.S. Federal Highway Administration.
Mallela, J., A. Mitchell, J. Gustafson, M. J. Olsen, C. Parrish, D. T. Gillins, M. Kumpula, and G. Roe. (2018). Effective Use of Geospatial Tools in Highway Construction, FHWA-HIF-19-089, U.S. Federal Highway Administration.
Mallet, C., and F. Bretar. (2009). Full-Waveform Topographic Lidar: State-of-the-Art. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 64, No. 1: 1–6.
Markus, S. J., J. Wartman, M. Olsen, and M. M. Darrow. (2023). Lidar-Derived Rockfall Inventory: An Analysis of the Geomorphic Evolution of Rock Slopes and Modifying the Rockfall Activity Index (RAI), Remote Sensing, Vol. 15: 4223.
Martin, M. A., Q. K. Jahanger, G. Zimmerman, A. Hadziomerspahic, D. N. Sillars, E. H. Ng, and J. Calvo-Amodio. (2020). Case Study: Economic Analysis of Statewide Roadway 3D Mapping Using Mobile LiDAR, Journal of Transportation Engineering, Part A: Systems, Vol. 146: 05020004.
Mathew, J. K., H. Malackowski, Y. Koshan, C. Gartner, J. Desai, H. Li, E. Cox, A. Habib, and D. M. Bullock. (2024). Development of Latitude/Longitude (and Route/Milepost) Model for Positioning Traffic Management Cameras, FHWA/IN/JTRP-2024/03, U.S. Department of Transportation, Federal Highway Administration.
McIntosh, D. L. (2020). Utilization of LiDAR Technology to Assess Vertical Clearances of Civil Infrastructure, M.Sc. thesis, Western Kentucky University.
Mirzaei, K., M. Arashpour, E. Asadi, H. Masoumi, Y. Bai, and A. Behnood. (2022). 3D Point Cloud Data Processing with Machine Learning for Construction and Infrastructure Applications: A Comprehensive Review, Advanced Engineering Informatics, Vol. 51: 101501.
Molina, A. A., Y. Huang, Z. Zhu, and M. Namian. (2024). Comparing the Accuracy Between UAS Photogrammetry and LiDAR in Bridge Inspections, Construction Research Congress, ASCE.
Momeni Rad, F., C. Sydora, and K. El-Basyouny. (2024). Leveraging Generative Design and Point Cloud Data to Improve Conformance to Passing Lane Layout, Sensors, Vol. 24.
Mora, O. E., M. G. Lenzano, C. K. Toth, D. A. Grejner-Brzezinska, and J. V. Fayne. (2018). Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs, Geosciences, Vol. 8, No. 1: 23. https://doi.org/10.3390/geosciences8010023.
Moreu, F., C. Lippitt, and X. Yuan. (2020). Bridge Construction Monitoring Using LIDAR for Quantified, Objective Quality-Control Quality-Assurance (QOQCQA), Report No. 19STUNM02, Transportation Consortium of South-Central States.
Nasimi, R., F. Moreu, and G. M. Fricke. (2023). Sensor Equipped UAS for Non-Contact Bridge Inspections: Field Application, Sensors, Vol. 23: 470.
Nathanson, M., J. W. Kean, T. J. Grabs, J. Seibert, H. Laudon, and S. W. Lyon. (2012). Modelling Rating Curves Using Remotely Sensed LiDAR Data, Hydrological Processes, Vol. 26: 1427–1434.
National Geospatial Advisory Committee 3D Elevation Program Subcommittee. (2023). Assessment of the 3D Elevation Program, Federal Geographic Data Committee. https://www.fgdc.gov/ngac/meetings/june-2023/ngac-assessment-of-the-3d-elevation-program-june.pdf.
Nebraska DOT. (2017). 2017 NDOR Airborne LiDAR Mapping Guidelines, Nebraska Department of Transportation. https://dot.nebraska.gov/media/ghjluabw/consult-Lidar.pdf.
Nebraska DOT. (2022). Request for Qualifications: Professional Services for Photogrammetry, Aerial Photography, Airborne LiDAR, Nebraska Department of Transportation. https://dot.nebraska.gov/media/2canvgk2/rfq-2203-on-call-services-for-photogrammetry.pdf.
Ní Bhreasail, Á., S. Pritchard, J. Carluccio, J. Manning, T. Daly, A. Merritt, and J. Codd. (2018). Remote Sensing for Proactive Geotechnical Asset Management of England’s Strategic Roads, Infrastructure Asset Management, Vol. 6: 222–232.
Nolan, J., R. Eckels, M. Evers, R. Singh, and M. J. Olsen. (2015). Multi-Pass Approach for Mobile Terrestrial Laser Scanning, ISPRS Annals of Photogrammetry, Remote Sensing, and Spatial Information Sciences, Vol. 2: 105–112. https://doi.org/10.5194/isprsannals-II-3-W5-105-2015.
Nolan, J., R. Eckels, M. J. Olsen, K. S. Yen, T. A. Lasky, and B. Ravani. (2017). Analysis of the Multi-Pass Approach for Collection and Processing of Mobile Laser Scan Data, Journal of Surveying Engineering, Vol. 143, No. 3: 04017004. Special Issue on Mobile Mapping Technology. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000224.
O’Banion, M.S., M. J. Olsen, C. E. Parrish, and M. Bailey. (2018). Interactive Visualization of 3D Coordinate Uncertainties in Terrestrial Laser-Scanning Point Clouds Using OpenGL Shader Language, Journal of Surveying Engineering, Vol. 145, No. 1. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000267.
O’Hara, C. (2011). Cross-Walking Lidar Guidelines and Base Specifications’ to Data Lifecycle Verification Approaches, Photogrammetric Engineering and Remote Sensing, Vol. 77.
Olsen, M. J. (2015). In-Situ Change Analysis and Monitoring Through Terrestrial Laser Scanning, Journal of Computing in Civil Engineering, Vol. 29, No. 2: 04014040.
Olsen, M. J. (2022). Chapter 8 Terrestrial Laser Scanning, Surveying and Geomatics Engineering: Principles, Technologies, and Applications, ASCE MOP152, Reston, Va.
Olsen, M. J., et al. (2013). NCHRP Report 748: Guidelines for the Use of Mobile LIDAR in Transportation Applications, Transportation Research Board of the National Academies, Washington, DC.
Olsen, M. J., E. Che, J. Jung, M. Thorsen, J. Caya, and G. V. Roe. (2024–2025 under review). Leveraging Pocket Lidar for Construction Inspection and Digital As-Builts, FHWA-PROJ-21-0038.
Olsen, M. J., J. Allan, S. Dundas, B. Leshchinsky, M. Krivova, A. Senogles, J. Herrmann, C. Parrish, and A. L. Mackenzie. (2024). US Highway 101 Coastal Hazard Vulnerability and Risk Assessment for Mitigation Prioritization, SPR843 Final Report, Oregon DOT.
Olsen, M. J., and J. Jung. (2020). Efficient Extraction and Evaluation of Complex Pavement Markings from Mobile Laser Scan Data, Final Report, PacTrans. http://hdl.handle.net/1773/46275.
Olsen, M. J., J. Jung, E. Che, H. Rasitveis, Y. Turkan, and C. Parrish. (in press). Automating Lidar Data to Develop and Manage Active Transportation Asset Inventories, SPR850 Final Report, Oregon DOT.
Olsen, M. J., B. A. Leshchinsky, A. Senogles, J. Herrmann, and J. Allan. (2022). Coastal Landslide and Sea Cliff Retreat Monitoring for Climate Change Adaptation and Targeted Risk Assessment, Interim Report Project SPR807, FHWA-OR-RD-22-13.
Olsen, M. J., C. Massey, A. Senogles, B. A. Leshchinsky, and J. Wartman. (2021). Predicting Seismically Induced Rockfall Hazard for Targeted Site Mitigation, SPR809 Final Report, Oregon Department of Transportation.
Olsen, M. J., C. Parrish, E. Che, J. Jung, and J. Greenwood. (2018). Lidar for Maintenance of Pavement Reflective Markings and Retroreflective Signs: Vol. I: Reflective Markings, Vol. II: Retroreflective Signs, FHWA-OR-RD-19-01, Oregon Department of Transportation.
Olsen, M. J., R. Singh, K. Williams, and A. Chin. (2012). Transportation Engineering, Manual of Airborne Topographic LIDAR, ASPRS.
OpenTopography. (2024). High-Resolution Topography Data and Tools. https://opentopography.org.
Oregon DOT Research. (2024). Lidar for Pavement Markings. High Value Research and Supplemental Winners 2023 Poster Session, TRB Annual Meeting, Washington DC.
Panakkal, P., A. M. Wyderka, J. E. Padgett, and P. B. Bedient. (2023). Safer This Way: Identifying Flooded Roads for Facilitating Mobility During Floods, Journal of Hydrology, Vol. 625: 130100.
Park, B.-K. D., J. R. Sayer, A. D. Clover, and M. P. Reed. (2023). Longitudinal Degradation of Pavement Marking Detectability for Mobile LiDAR Sensing Technology in Real-World Use, Sensors, Vol. 23: 5815. https://doi.org/10.3390/s23135815.
Pecheux, K. K., B. B. Pecheux, G. Ledbetter, and C. Lambert. (2020a). NCHRP Research Report 952: Guidebook for Managing Data from Emerging Technologies for Transportation, Transportation Research Board, Washington, DC. https://nap.nationalacademies.org/catalog/25844/guidebook-for-managing-data-from-emerging-technologies-for-transportation.
Pecheux, K. K., B. B. Pecheux, G. Ledbetter, J. D. Scheneberger, J. Hicks, B. Burkhard, and M. Campbell. (2020b). NCHRP Web Only Document 282: Framework for Managing Data from Emerging Transportation Technologies to Support Decision-Making, Transportation Research Board, Washington, DC. https://dx.doi.org/10.17226/25965.
Petroselli, A. (2012). LIDAR Data and Hydrological Applications at the Basin Scale, GIScience and Remote Sensing, Vol. 49: 139–162.
Pradhan, B., and M. I. Sameen. (2020). Road Geometric Modeling Using Laser Scanning Data: A Critical Review, Laser Scanning Systems in Highway and Safety Assessment: Analysis of Highway Geometry and Safety Using LiDAR. https://link.springer.com/chapter/10.1007/978-3-030-10374-3_2.
Puente, I., B. Akinci, H. González-Jorge, L. Díaz-Vilariño, and P. Arias. (2016). A Semi-Automated Method for Extracting Vertical Clearance and Cross Sections in Tunnels Using Mobile LiDAR Data, Tunnelling and Underground Space Technology, Vol. 59: 48–54.
Rahman, F., A. Chakraborty, S. Khan, and R. Salunke. (2024). Impact of Vetiver Plantation on Unsaturated Soil Behavior and Stability of Highway Slope, Geosciences, Vol. 14: 123.
Ransberger, D. M. (2009). Improving Disaster Response Mechanisms: Detecting Transport Network Obstructions Using LiDAR Data, M.A. thesis, The Ohio State University.
Rastiveis, H., A. Shams, W. A. Sarasua, and J. Li. (2020). Automated Extraction of Lane Markings from Mobile LiDAR Point Clouds Based on Fuzzy Inference, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 160: 149–166.
Ravani, B., K. S. Yen, T. A. Lasky, S. M. Donecker, and Z. Jian. (2015). Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction, CA15-2194, California Department of Transportation.
Ravi, R., D. Bullock, and A. Habib. (2021). Pavement Distress and Debris Detection Using a Mobile Mapping System with 2D Profiler LiDAR, Transportation Research Record, No. 2675: 428–438.
Reeder, G. D., and G. A. Nelson. (2015). 3D Engineered Models for Highway Construction: The Iowa Experience, Project RB33-014, Iowa DOT.
Remmel, T. K., K. W. Todd, and J. Buttle. (2008). A Comparison of Existing Surficial Hydrological Data Layers in a Low-Relief Forested Ontario Landscape with Those Derived from a LiDAR DEM, The Forestry Chronicle, Vol. 84: 850–865.
Renslow, M. (2012). Airborne Topographic LIDAR Manual, ASPRS Press.
Riexinger, L. E. et al. (2021). NCHRP Web-Only Document 341: Roadside Database Coding Manual. Transportation Research Board, Washington, DC.
Riley, J. (2017). Understanding Metadata, National Information Standards Organization, Washington, DC. http://www.niso.org/publications/press/UnderstandingMetadata.pdf.
Rister, B. W., L. McIntosh, G. B. Dadi, R. Yang, and E. Grady. (2018). Utilization of Light Detection and Ranging for Quality Control and Quality Assurance of Pavement Grades, KTC-18-01/SPR15-496-1F, Kentucky Transportation Center Research Report.
Rozario, P., and R. Gomes. (2021). Comparison of Data Mining Algorithms in Remote Sensing Using Lidar Data Fusion and Feature Selection, IEEE International Conference on Electro Information Technology (EIT).
Sairam, N., S. Nagarajan, and S. Ornitz. (2016). Development of Mobile Mapping System for 3D Road Asset Inventory, Sensors, Vol. 16: 367.
Saito, M., M. Goshima, K. Aruga, K. Matsue, Y. Shuin, and T. Tasaka. (2013). Study of Automatic Forest Road Design Model Considering Shallow Landslides with LiDAR Data of Funyu Experimental Forest, Croatian Journal of Forest Engineering, Vol. 34: 1–15.
Sanaei, P., and B. Salman. (2024). Use of Photogrammetry and Laser Scanning Technologies in Runway Inspections. In Construction Research Congress 2024, pp. 386–396. https://ascelibrary.org/doi/abs/10.1061/9780784485262.040.
Scheutz, M. Potree. (2016). Rendering Large Point Clouds in Web Browsers, M.S. thesis, TU Wien.
Seat, M. L. (2020). Using LiDAR Data to Analyze Access Management Criteria in Utah, Brigham Young University, M.Sc. thesis, Brigham Young University.
Senogles, A., M. J. Olsen, and B. Leshchinsky. (2022). SlideSim: 3D Landslide Displacement Monitoring Through a Physics-Based Simulation Approach to Self-Supervised Learning, Remote Sensing, Vol. 14, No. 11: 2644. https://doi.org/10.3390/rs14112644.
Senogles, A., M. J. Olsen, and B. Leshchinsky. (2023). LADI: Landslide Displacement Interpolation Through a Spatial-Temporal Kalman Filter, Computers and Geosciences, Vol. 180. https://doi.org/10.1016/j.cageo.2023.105451.
Seydi, S. T., and H. Rastiveis. (2019). A Deep Learning Framework for Roads Network Damage Assessment Using Post-Earthquake LiDAR Data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 42: 955–961.
Shamayleh, H., and A. Khattak. (2003). Utilization of LiDAR Technology for Highway Inventory, Proceedings of the 2003 Mid-Continent Transportation Research Symposium, Ames, Iowa.
Shams, A., W. A. Sarasua, B. T. Russell, W. J. Davis, C. Post, H. Rastiveis, A. Famili, and L. Cassule. (2023). Extracting Highway Cross Slopes from Airborne and Mobile LiDAR Point Clouds, Transportation Research Record: Journal of the Transportation Research Board, No. 2677.
Shan, J., C. K. Toth (Eds.). (2018). Topographic Laser Ranging and Scanning: Principles and Processing (2nd ed.). CRC Press.
Sharma, S., A. Chawla, and S. Mukherjee. (2024). Investigation of Real-World Crash Using an Accident Reconstruction Methodology Employing Crash Test Data, Symposium on International Automotive Technology.
Sharma, N. C. P., J. A. Parikh, and M. Clark. (2006). A LiDAR Collaboratory Data Management System, IEEE International Symposium on Geoscience and Remote Sensing.
Shirowzhan, S., S. Lim, J. Trinder, H. Li, and S. M. Sepasgozar. (2020). Data Mining for Recognition of Spatial Distribution Patterns of Building Heights Using Airborne LiDAR Data, Advanced Engineering Informatics, Vol. 43: 101033.
Singh, R. (2008). Engineering Automation: Key Concepts for a 25 Year Time Horizon, Oregon Department of Transportation, Highway Division. https://www.oregon.gov/ODOT/ETA/Documents_ETA/Engineering-Auto-25-Yr-Plan.pdf.
Soilán, M., A. Justo, A. Sánchez-Rodríguez, and B. Riveiro. (2020). 3D Point Cloud to BIM: Semi-Automated Framework to Define IFC Alignment Entities from MLS-Acquired LiDAR Data of Highway Roads, Remote Sensing, Vol. 12: 2301.
Spadavecchia, C., E. Belcore, and V. Di Pietra. (2023). Preliminary Test on Structural Elements Health Monitoring with a LiDAR-Based Approach, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLVIII-2/W3-2023: 247–253.
Spore, N. J., and K. L. Brodie. (2016). Data Integration Framework Data Management Plan: Remote Sensing Dataset, 1012678, Defense Technical Information Center.
Sturgill, Jr., R. E. (2023). Early Identification and Location of Utility Facilities Within Iowa DOT Project Footprints, RE22013, Iowa DOT.
Terpstra, T., J. Dickinson, A. Hashemian, and S. Fenton. (2019). Reconstruction of 3D Accident Sites Using USGS LiDAR, Aerial Images, and Photogrammetry, SAE Technical Paper 2019-01-0423.
Transportation Research Board (TRB). (2018). Transportation Research E-Circular C235: Glossary of Transportation Construction Quality Assurance Terms, 7th Edition. Transportation Research Board, Washington, DC.
Tsai, Y., Q. Yang, and Y. Wu. (2011). Use of Light Detection and Ranging Data to Identify and Quantify Intersection Obstruction and Its Severity, Transportation Research Record, No. 2241.
Turkan, Y., and P. Calvi. (2023). LiDAR, Drones, and BRIM for Rapid Bridge Inspection and Management, Final Project Report 2021-M-OSU-3, Pacific Northwest Transportation Consortium (PacTrans).
Turkan, Y., M. J. Olsen, J. Gambatese, and N. Puri. (2019). Project Progress Tracking Using LiDAR and 4D Design Models, ODOT SPR-811 Final Report. https://www.oregon.gov/ODOT/Programs/ResearchDocuments/SPR811FinalReport.pdf.
Uddin, W., and E. Al-Turk. (2001). Airborne LIDAR Digital Terrain Mapping for Transportation Infrastructure Asset Management. In Proceedings, Fifth International Conference on Managing Pavements, pp. 11–14. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee7df34d6c6632d3780e581fe9ae6a833b235863.
United States Geological Survey (USGS). (n.d.). Inflation Reduction Act Accelerates USGS Effort to Collect High-Resolution Data of Landscapes Across 25 States. https://www.usgs.gov/3d-elevation-program/program-benefits-and-uses.
Ussyshkin, R. V., L. Theriault, M. Sitar, and T. Kou. (2011). Advantages of Airborne Lidar Technology in Power Line Asset Management. In 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, pp. 1–5. IEEE. https://ieeexplore.ieee.org/abstract/document/5697427.
Vaughan, M., M. Pitts, C. Trepte, D. Winker, B. Getzewich, J. Tackett, X. Cai, P. Detweiler, A. Garnier, and J. Kar. (2023). Cloud-Aerosol LIDAR Infrared Pathfinder Satellite Observations (CALIPSO)-Data Management System, Data Products Catalog V4.95.
Veneziano, D., R. Souleyrette, and S. Hallmark. (2002). Evaluation of LiDAR for Highway Planning, Location and Design, Conference Proceedings of Integrated Remote Sensing at the Global, Regional and Local Scale, ISPRS Commission I Mid-Term Symposium in Conjunction with Pecora.
Vincent, R., and M. Ecker. (2010). Light Detection and Ranging (LIDAR) Technology Evaluation; Missouri Department of Transportation: Jefferson City, MO. https://rosap.ntl.bts.gov/view/dot/18379/dot_18379_DS1.pdf.
Vo, A. V., C. N. L. Hewage, G. Russo, N. Chauhan, D. F. Laefer, M. Bertolotto, N.-A. Le-Khac, and U. Oftendinger. (2019). Efficient LiDAR Point Cloud Data Encoding for Scalable Data Management Within the Hadoop Eco-System, IEEE International Conference on Big Data (Big Data).
Vosselman, G., and H. G. Maas. (2010). Airborne and Terrestrial Laser Scanning, Whittles: Caithness, UK. https://www.whittlespublishing.com/Airborne_and_Terrestrial_Laser_Scanning.
Wang, H., and D. Feng. (2024). Rapid Geometric Evaluation of Transportation Infrastructure Based on a Proposed Low-Cost Portable Mobile Laser Scanning System, Sensors, Vol. 24: 425.
Wang, J., Q. Si, Z. Song, D. Wang, and H. Yao. (2023). 3D Geometry Modeling and Safety Compliance Assessment of In-Service Roads Using Massive LiDAR Point Clouds, IEEE Transactions on Intelligent Transportation Systems.
Wang, M., K. Liu, G. Yang, and J. Xie. (2017). Three-Dimensional Slope Stability Analysis Using Laser Scanning and Numerical Simulation, Geomatics, Natural Hazards and Risk, Vol. 8: 997–1011.
Wang, S., Y. Ma, J. Liu, B. Yu, and F. Zhu. (2022). Readiness of As-Built Horizontal Curved Roads for LiDAR-Based Automated Vehicles: A Virtual Simulation Analysis, Accident Analysis and Prevention, Vol. 174: 106762.
Wang, Z., and M. Menenti. (2021). Challenges and Opportunities in Lidar Remote Sensing, Frontiers in Remote Sensing, Vol. 2: 641723.
Waugh, M., and A. Shakoor. (2015). Characterizing Slope Stability of Colluvial Soils in Ohio Using LiDAR Data, Engineering Geology for Society and Territory, Vol. 2: 249–253.
White, R. A., B. C. Dietterick, T. Mastin, and R. Strohman. (2010). Forest Roads Mapped Using LiDAR in Steep Forested Terrain, Remote Sensing, Vol. 2: 1120–1141.
White, S. C. (2020). Use of Lidar Data to Investigate the Influence of Bottom Friction Coefficients for Storm Surge Modeling of Hurricane Michael in the Florida Panhandle, M.Sc. thesis, Embry-Riddle Aeronautical University.
Williams, K., M. J. Olsen, G. V. Roe, and C. Glennie. (2013). Synthesis of Transportation Applications of Mobile LiDAR, Remote Sensing, Special Issue on Advances in Mobile Laser Scanning and Mobile Mapping, Vol. 5, No. 9: 4652–4692. https://doi.org/10.3390/rs5094652.
Wu, Q., and C. R. Lane. (2017). Delineating Wetland Catchments and Modeling Hydrologic Connectivity Using LiDAR Data and Aerial Imagery, Hydrology and Earth System Sciences, Vol. 21: 3579–3595.
Wu, W., Q. Wang, G. Wang, J. Wang, T. Zhao, Y. Liu, Do. Gao, Z. Liu, and H. Wang. (2025). Emie-map: Large-scale road surface reconstruction based on explicit mesh and implicit encoding. In European Conference on Computer Vision, pp. 370–386. Springer. https://link.springer.com/chapter/10.1007/978-3-031-73021-4_22
Xu, X., L. Zhang, J. Yang, C. Cao, W. Wang, Y. Ran, Z. Tan, and M. Luo. (2022). A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR, Remote Sensing, Vol. 14, No. 12: 2835.
Yen, K. S., K. Akin, A. Lofton, B. Ravani, and T. A. Lasky. (2010). Using Mobile Laser Scanning to Produce Digital Terrain Models of Pavement Surfaces, Final Report of the Advanced Highway Maintenance and Construction Technology Research Center Research Project, University of California at Davis.
Yen, K. S., B. Ravani, and T. A. Lasky. (2011). LiDAR for Data Efficiency, WA-RD 778.1, Washington (State) DOT, Office of Research and Library.
Yen, K. (2021). Automated LiDAR Extraction Software, Caltrans Division of Research, Innovation and System Information Preliminary Investigation. 2021. https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/preliminary-investigations/pi-0324-lidarsoftwarepi.pdf.
Yu, J., Q. Zhao, Z. Yu, Y. Liu, and S. Ding. (2024). A Review of the Sediment Production and Transport Processes of Forest Road Erosion, Forests, Vol. 15: 454.
Yuan, K., L. Ding, M. Abdelfattah, and Z. J. Wang. (2022). Licas3: A Simple Lidar–Camera Self-Supervised Synchronization Method. IEEE Transactions on Robotics 38, No. 5 (2022): 3203–3218. https://ieeexplore.ieee.org/abstract/document/9770125.
Zenk, D. G. D. (2023). NOAA Technical Memorandum NOS NGS 92 Classifications, Accuracy Standards, and General Specifications for GNSS Geodetic Control Surveys Using OPUS Projects, NGS Webinar Series, National Geodetic Survey.
Zeybek, M. (2021). Extraction of Road Lane Markings from Mobile LiDAR Data, Transportation Research Record: Journal of the Transportation Research Board, Vol. 2675: 30–47.
Zhang, Z., J. Li, Y. Guo, C. Yang, and C. Wang. (2019). 3D Highway Curve Reconstruction from Mobile Laser Scanning Point Clouds, IEEE Transactions on Intelligent Transportation Systems, Vol. 21: 4762–4772.
Zhou, Y., R. Huang, T. Jiang, Z. Dong, and B. Yang. (2021). Highway Alignments Extraction and 3D Modeling from Airborne Laser Scanning Point Clouds, International Journal of Applied Earth Observation and Geoinformation, Vol. 102: 102429.
Zhou, Y., E. Che, Y. Turkan, and M. J. Olsen, (2024). Virtual ADA Compliance Assessment: Mimicking Digital Inclinometers to Measure Slopes within Point Clouds, Journal of Surveying Engineering, 150(4). https://doi.org/10.1061/JSUED2.SUENG-1477.