Previous Chapter: Genome Structure and Evolution in Drosophila: Applications of the Framework P1 Map
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

INDEX

A

Acanthomorphs, 73

Acritarchs

   across Varanger ice age, 73, 74, 75-76

   cladogenetic evolution, 75, 78-79

   cohort survivorship in Proterozoic, 76

   diversity peaks, 77-78, 79

   fossil record, 69-73

   morphological diversification, 73

   Precambrian evolution, 67-69

   Proterozoic-Cambrian evolution, 74-80

Adaptive landscape

   analysis of walks in, 158-164

   depth of valley in, 28

   E. coli, 262-264, 267-268

   as metaphor, 145-147, 261-262

   morphospace in, 149

   phenotype fitness, modeling of, 153-154

   in phenotypic transformation, 146-147

   plant model, 147-154

   point of origin for walks in, 154

   quantitative analysis in, 145-146

   single vs. multi-task walks, 155-158

   task demands in, 146-147

   unimpeded walks in, 147-149

Adenosine triphosphatase, archaebacterial subunits, 13, 19

African replacement model, 203, 205

Amino acids

   covarion model of replacement, 235-236

   in major histocompatibility complex, 189

   replacement in RuBisCo protein, 223-227

   replacement in SOD, 235

   replacement patterns, 213, 230

   in replication in RNA world, 1, 35, 36, 37

   in SOD molecular clock, 244, 246-247

   See also Superoxide dismutase

Amphibians, in Cretaceous-Tertiary mass extinction, 118-119

Amylase, in Drosophila pseudoobscura, 289, 290-291

Annelids

   late Precambrian form, 103

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   phylogenic lineage, 97-98

Anticodon, origins, 26, 37

Archaea, 15-16

Archaebacteria

   characteristics, 11-12

   classification, 11, 21-22

   in eubacteria-eukaryotic-prokaryotic lineage, 4, 12-16

   genome sequence, 18, 21

   ribozymology, 4-5

   RNA polymerase subunits, 20

Arthropods

   late Precambrian form, 102-103

   phylogenetic lineage, 95, 96-97

Asexual reproduction, 53

Atmospheric conditions

   in Cambrian explosion, 102

   primordial cyanobacteria, 55-56

B

Background selection, 276, 277-282

Bacteria

   chloroplast-mitochondria lineage in, 9

   as prokaryotes, 6

   reproductive rate, 251

   See also E. coli

Bacteriophages

   P1. See Framework P1 map

   Qß, replication strategy, 28-29, 30, 33-34

Balanced selection, 196-197, 199

Bilaterians

   body plan evolution, 101

   Vendian, 95, 97, 98-99

Biometrical science, iv

Bipedalism, 173-175

Bottleneck effect, 188-189, 197-201, 206

   in human evolution, 203, 204

Brachiopods, 98

Bradytelic evolution, 43

   Simpson on, 53, 131-132

Brome mosaic virus, 29

Burgess Shale

   cnidarians in, 90

   middle Cambrian diversity in, 91

C

Cambrian Period, 85

   acritarch evolution, 69-80

   annelids, 97-98

   boundaries of explosion, 88-89, 91

   environmental factors in explosion, 102

   gene expression in explosion, 103

   metazoan body plans, 87, 93

   metazoan diversity before explosion, 85, 99

   metazoan faunas, 89-91

   skeletal fossils, 90-91

Candelabra model, 202-203

Cauliflower mosaic virus, 33

CCA terminus, 3, 28, 31, 35-37

Cell-type number, 92-93

Cenancestor

   definition, 6

   in eukaryote-prokaryote lineage, 10-11

   genome structure, 18

   Iwabe rooting, 13-15, 16-20

   macromolecular synthesis in, 25-26

   obstacles to understanding, 20-22

Cephalopods, body plan, 98

Chance events, 251, 267-268

Chloroplast

   amino acid replacement in, 223-227

   codon use, 220, 229

   complexity of genome evolution in, 229-231

   eukaryote-prokaryote lineage, 7, 9, 21

   in eukaryotic cell, 215

   genome conservation, 216-217

   genome structure, 213, 215, 216

   genomic deletion events, 217-219

   intron evolution, patterns of, 228-229

   mutation patterns, 217-220

   noncoding DNA in, 217-220, 229

   nucleotide substitution rate, 221-223

   protein coding genes in, 220-223

   pseudogenes, 217

   research role, 230

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

Chromosomes

   Drosophila polymorphism, 251-252, 283

   Drosophila polytene, 299-300, 307, 310

   mapping, 252

   telomerase, 34

Chroococcaceans

   fossil-modern comparisons, 49-50, 52

   ranges of growth/survivability, 53-55

Classification systems

   cenancestor in, obstacles to, 20-22

   cyanobacteria, 44, 49

   domains in, 14-15, 16

   prokaryote-eukaryote-archaebacteria, 6-7, 11, 14-16

Cnidarians, 89-90

Coalescence theory, 196-197, 206

Codons

   in chloroplast, 220, 229

   concomitantly variable. See Covarions

   in molecular clock, 243-244

Color vision, 205-206

Comparative sequence analysis, 230, 231

Competition, as extinction factor, 111-112, 117-118

Complexity

   body plan, cell-type number and, 92-93

   Cambrian metazoa, 92

   forcing mechanisms in, 92, 93

   morphological diversity and, 86

   Precambrian worms, 99

Covarions

   in molecular clockwork, 243, 246, 248

   in SOD simulation, 236-237, 240, 243

   theory of, 235-236

Cretaceous-Tertiary mass extinction, 110, 114-115, 118-119, 121

Cyanobacteria, 9

   classification, 6

   ecological distribution, 53

   hypobradytelic evolution in, 47-53, 57

   living vs. fossil morphology, 44, 47-50, 48, 57

   paleoenvironment, 50-52

   Precambrian evolution, 42, 57-58

   Precambrian fossil record, 43, 44-46

   ranges of growth/survivability, 53-56

   reproduction, 53

   specialization and survivability, 53, 56

   tempo of evolution, 43-44

Cytoskeletal proteins, 16

D

Darwin, Charles, iii-iv, 125

   on extinction, 109-111, 117-118, 137

   Lyell and, 126

   uniformitarianism in thought of, 126-127, 137

Deuterostomes, 95, 96

Dinosaurs

   fossil record, 113

   species susceptibility in extinction, 120

   taxonomic selectivity in extinction of, 118

Diplomonads, 19

Discontinuous variation, iv

Diversity peaks

   acritarch, 74-76, 77-79

   Cambrian explosion, 85, 87-91, 93, 99, 102-103

   Middle Cambrian body plans, 91

   Proterozoic protistans, 77-78, 79, 80

DNA

   Drosophila, extraction and sequencing of, 289-290

   Drosophila polymorphism, patterns of, 251, 283

   in Drosophila polytene, 300

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   evolutionary complexity in chloroplast genome, 229

   evolutionary data in, 188

   human mitochondrial evolution, 203-204, 206

   mitochondrial polymorphism, 189

   non-primer synthesis, 33

   noncoding, in chloroplast genome, 217-220, 229

   RNA ancestry in, 4-6

   selective sweeps effects, 277

   sequence data base, 275

   tRNA in replication of, 31-33

Dobzhansky, Theodosius, 252, 287-288

Domains, classification of, 14-15, 16

Drosophila

   amylase in, 290-291

   ancestor chromosomes, 252

   ancestor gene in pseudoobscura, 288-297, 310-311

   chromosome mapping, 252

   chromosome polymorphism, patterns in, 251

   cytogenetic phylogeny, 288

   early chromosomal studies, 287-288

   extraction and sequencing of genomic DNA, 289-290

   mutation rate, 280-282

   polytene chromosome, 299-300, 307, 310

   recombination-polymorphism correlation, 276, 282-283

   reproductive rate, 251

   research advantages, 299-300

   restriction site polymorphism, 289, 292-294

   virilis, 311

   yeast artificial chromosome map, 300

   See also Framework P1 map

Duration of species, 195-196

E

E. coli, 11, 18

   adaptive landscape, 262-264, 267-268

   assessment of mean fitness in, 255, 259-260

   cell size evolution, 256-259

   chance events in experimental evolution, 267

   environmental factors in, 268

   evolutionary stasis in experimental populations, 268-269

   experimental evolutionary method, 255-256

   fitness evolution in experimental population, 260-261

   in Framework P1 map, 301-302

   limitations of experimental evolution, 270

   measurement of cell size, 255, 256, 264

   natural selection in experimental population, 256, 257, 259, 264-266

   outcomes of experimental evolution, 271

   parallel evolution in experimental populations, 266-268

   punctuated equilibrium in experimental evolution, 269

   reproductive rate, 251

   size-fitness relationship, 264-266

Elongation factors

   precenancestral, 13, 19-20

   in Qß RNA genome replication, 30

   Tu, RNase P and, 29

Endosymbiont hypothesis, 7, 9, 21

Entophysalidaceae, 50, 52

Environmental factors

   in acritarch evolutionary tempo, 79

   in Cambrian explosion, 79, 102

   cyanobacterial growth tolerances, 53-56

   in E. coli experimental evolution, 268

   in extinction, 119, 121, 122

   in morphological research, 254-255

   in prokaryotic evolution, 42

Eosynechococcus moorei, 47

Epling, Carl, 252, 287-288

Eubacteria, 4, 11

   archaebacteria linkage, 14, 20

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   genome sequencing, 21

   operans in, 18

   origins of, 13-14

Eukaryotes

   ancestral ribosome, 9

   chloroplast genome, 215

   endosymbiont hypothesis, 7, 9, 21

   as Eucarya, 15

   evolution of, 4-6

   evolutionary model, 7-12

   evolutionary pathway, 12-16

   fossil record, 7

   introns, 78

   nuclear genome evolution, 18-19

   nuclear lineage, 9, 11

   Precambrian acritarchs, 67-73

   prokaryotes vs., 6-7

   Proterozoic algae, 78

   rate of evolution, 2

   RNA polymerase subunits, 20

   rRNA sequencing, 8-9, 11

   tRNA production, 30

Evolutionary theory

   bipartite model, 56-57

   cellular information systems in, 4-6

   eukaryotes-prokaryote lineage, 7-12

   eukaryotes-prokaryote split, 12-16

   genomic diversity of viruses, 30-31

   historical development, iii-vi

   human origins, 201-205

   intron theory, 11, 78

   Modern Synthetic, 129

   molecular research in, 22

   paleontology and, 127-131

   precellular evidence, 27

   RNA in, 25-26

   significance of extinction, 85-86, 109, 122-123

   See also Darwin, Charles

   See also Macroevolutionary theory

Exon theory, 11

Extinction

   aftermath, 117, 122

   body size and, 119

   Cretaceous-Tertiary event, 110, 114-115, 118-119, 121

   Darwin on, 109-111, 117-118, 137

   environmental factors in, 121, 122

   episode analysis, 114-117

   evolutionary significance, 85-86, 109, 122-123

   fossil record, 110, 112-113

   geographic distribution and, 119

   interspecies competition in, 111-112, 117-118

   kill curve, 115-117

   mass episodes, 110, 112, 114-115, 117, 123, 137

   natural selection and, 120

   role of, 121-122

   selectivity mechanisms in, 117-120, 123

   Simpson on, 111-112

   species susceptibility, 119-120

   taxonomic susceptibility, 118-119

   trait susceptibility, 119

F

Fitness as evolutionary factor

   E. coli cell size and, 264-266

   E. coli evolutionary trajectory, 260-264

   measuring, in E. coli, 255-256, 259-260

   modeling evolutionary morphology of vascular land plants, 149-154, 158-164

   modeling of task demands for plants, 155-158

   modeling requirements, 147-149

   in morphological transformation, 146-147

   obstacles to analysis, 145-146

   phenotypic maxima vs. phenotypic optima, 157-158

   plants as object of study, 147

   task demands and, 146

Fossil record

   acritarchs, Proterozoic-Cambrian, 69-73

   annelid, 97-98

   brachiopod, 98

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   correspondence of computer simulations, 160-162

   cyanobacterial hypobradytely, 47-53

   discontinuities in, v

   earliest metazoan, 89-90

   earliest skeletal, 90-91

   Early Cambrian, 87

   eukaryote, 7

   extinctions in, 110, 112-113

   H. erectus, 202

   hominid, 169, 173-175, 202, 203

   hypobradytelic evolution, 44-46

   marine animal survivorship analysis, 113

   molecular fossils, 27, 43, 44-46

   in morphological research, 254-255

   Paleoproterozoic, 2

   pre-cellular, 1

   Precambrian, 1-2, 43, 44-46

   prokaryote, 7

   Proterozoic-Cambrian, 64-73

   Simpson's use of, 41

   tracheophytes, 154, 160-162

Founder effect theory, 188-189, 197-201, 206

Framework P1 map

   cloning vectors, 301-302

   contig assembly, 306-307

   cytological analysis, 302, 307

   D. virilis in, 311

   depth of coverage, 300

   distribution of clones, 304-305

   Drosophila library, 303-304

   Drosophila strains, 300-301

   dual hybridizations, 304

   electronic mail access, 300

   in evolution studies, 307-311, 312

   insert sizes, 300

   ligated DNA packaging, 301-302

   PCR amplification of insert-vector junctions, 302-303

   PCR screening, 303

   plasmid DNA extraction, 302

   results, 303-307, 311-312

   STS markers, 299, 303, 306-307

   X chromosome, 305

G

Genetic information transfer

   allele selectivity, 195

   archaebacterial, 14

   in Cambrian explosion, 103

   cellular evolution, 4, 9-10

   chloroplast rp123 pseudogene, 217-219

   chloroplast to eukaryotic nuclear genome, 215-216

   coalescence theory, 196-197

   human polymorphisms, population size in, 197-201

   lateral events, 21

   metazoan body plan evolution, 99-101

   molecular clocks, 240-243

   in multiregional model of human evolution, 205-206

   in natural selection, 140-141

   recombination-polymorphism correlation, 276-283

   trans-specific polymorphisms, 191-196

Genetic science

   comparative sequence analysis in, 230, 231

   in evolutionary theory, iii-iv

   in phylogenetic reconstruction, 252

   population processes in, 275-276

   role of phylogeny research in, 216

   in species research, 187-188

Genotype

   mapping, 145-146

   phenotype linkage, 4, 6, 10

Geographic distribution

   cyanobacteria, 53, 56

   extinction and, 119

   in human origins, 202-207

Gloethece coerulea, 47

Haloferax volcanii, 18

H

Halophiles, 11

   genome structure, 18

Hedgehog gene, 100-101

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

Hitchhiking effects, 276, 277, 282-283

Homeobox genes, 100, 101

Horotelic evolution, 43, 131, 132

Hox/HOM genes, 100, 101

Human evolution

   allele phylogeny in, 191-193

   ancestral population size, 197-201

   ancestral species overlap, 181

   bipedalism, 173-175, 182

   body size, 175-177

   brain size, 178-181, 182

   color vision in, 205-206

   cranial, 170-173, 182

   dentition, 170, 177-178, 182

   DRB1 gene, 193

   food consumption, 177-178

   gene coalescence in, 196-197, 203-204, 206

   geographic models, 202-206

   hand structure, 175

   histocompatibility complex allele complexity, 167

   lipid metabolism in, 206

   morphological course, 167, 182

   most primitive hominid, 170, 173, 177

   multiregional model, 204-206

   phylogeny, 169-173

   population bottlenecks in, 188-189, 197-201, 206

   research trends, 167-168, 169

   single ancestor theory, 189, 203

   theory of origins, 201-205

   trans-specific polymorphism in speciation, 193-196

   within-species variation, 182

Human Genome Project, 299

Human leukocyte antigen complex. See Major histocompatibility complex

Hypobradytelic evolution

   in cyanobacteria, 43-44, 46-56

   fossil evidence, 44-46

I

Immune system, major histocompatibility complex in, 189

in situ hybridization, in chromosome mapping, 300

Introns, 11, 78

   evolutionary patterns in chloroplast genome, 228-229

L

Light conditions, for early cyanobacteria, 55

Lipid metabolism, 206

Lobopods, 97

Lyell, Charles, 126

Lyngbya, 47, 48

M

Macroevolutionary theory, 85-86

   causality in, 136

   experimental E. coli evolution and, 270-271

   hierarchical selection theory in, 137-142

   mass extinction in, 137

   punctuated equilibrium in, 136-137

   Simpson and, 132-136

Macromolecules

   evolutionary pathways of synthesis, 25

   social coevolution, 27-28

Major histocompatibility complex

   action of, 189

   allelic diversity, 189-191

   allelic phylogeny, 196-197

   DRB1 gene, 191-193, 196-197, 206

   maintenance of polymorphisms, population size in, 197, 201, 206-207

   role of, 189, 206

   trans-specific polymorphisms, 191-193

Mapping, genomic, 145-146

   Drosophila, 252, 299, 300

   framework map, definition of, 300

   human, 299

   hybridization technique in, 300

   overlap detection in, 299, 300

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   role of, 299

   yeast artificial chromosome map, 300

   See also Framework P1 map

Mauriceville plasmid, 31-34

Messenger RNA, 1, 26

Metazoans

   body-plan complexity, 91-93

   Cambrian faunas, 90-91

   Cambrian/Precambrian body plans, 87

   earliest fossils, 89-90

   genetic regulation in body plan evolution, 99-102

   Hox/HOM genes in, 100

   late Precambrian body plans, 95-99

   Precambrian diversity, 99

   Precambrian phylogeny, 95, 102-103

Methanogens, 11

Microsporidia, 19

Mitochondria

   eukaryote-prokaryote lineage, 7, 9, 21

   human evolution, 203-204, 206

   Mauriceville plasmid of Neurospora, 31-33

Mode of evolution

   corresponding tempos, 132

   definition, 3

   in molecular research, 3

   paleontological research, 130-131

   quantum, 134

Molecular fossils, 27, 43, 44-46

Mollusks, 98

   extinction record, 119

N

Natural selection. See Selection

Neurospora, Mauriceville plasmid, 31-33

Noah's Ark model, 203

Nucleotide substitution

   in chloroplast genome, 221-223

   as molecular clock, 242-243

   recombination rate and, 278-279

O

Operons, in archaebacterial/eubacterial lineage, 18-19

Oscillatoriaceans

   fossil-modern comparisons, 49-50, 52

   ranges of growth/survivability, 53-55

Paleolyngbya, 47, 48

P

Paleontology

   in evolutionary science, 129-131, 142-143

   phyletic data in, 133

   professional status, 127-129

Paleoproterozoic, 2

Paleozoic era, time scale, 64

Paralogy, 20-21

Phanerozoic eon

   evolution in, 41, 56-57, 58

   rate of evolution, 52-53

   worms, 99

Phenotype

   cell-type number in body plan complexity, 92-93

   genotype mapping, 145-146

   identifying trends in, 254

   modeling fitness transformations, 147-149, 160

Photosynthesis, 216

   endosymbiont hypothesis, 7

Phycodes pedum, 88

Phycomata, 67-68

Phylogeny

   algal eukaryotes, 78

   alleles in reconstruction of, 191

   amino acid replacement, 224, 226, 230

   archaebacteria-eukaryote-prokaryote, 6-20

   chloroplast genome, 229-230

   Drosophila pseudoobscura ancestor gene, 288-297

   eukaryote, 26

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   experimental reconstruction in bacteria, 255-256

   genetics in reconstruction of, 252

   hominid cladogram, 169-173

   metazoan body plans, 93-99

   Precambrian branching sequences, 93-95

   precenancestral, reconstruction of, 20-22

   prokaryote, 6-20

   reconstruction process, 292

   research role, 216

   Simpson's emphasis on, 133-134

   SOD amino acids, 237

   tRNA evolution, 26, 34-38

Plants

   chloroplast genome, 213, 215, 216

   intron evolution, 228-229

   modeling evolutionary morphology of, 149-154, 158-164

   modeling of task demands, 155-158

   tracheophyte evolution, 149, 154, 160-162

Pleistocene epoch

   extinction in, 121

   human population growth in, 198

Pleurocapsaceans, 51-52

Polymerase chain reaction, 302-303

Polymerases, domain structure, 33-34

Population size

   cyanobacteria, 53

   in fixation of neutral allele, 195

   in founder effect theory of speciation, 188

   in human evolution, 197-201, 203-207

   in maintenance of polymorphism, 197

Postmodern thought, 135-136, 143

Precambrian era

   arthropod evolution, 95, 96-97

   clade diversity, 69

   cyanobacterial hypobradytely in, 47-53, 57-58

   evolution in, 57-58

   life of, 41-42

   metazoan body plans, 95-99

   molecular fossil record, 43, 44-46

   phylogenetic models, 93-95

   prokaryote evolution, 41-42

   vascularized worms, 95-96, 98-99, 102-103

   Vendian fauna, 89-90, 95-96, 97

Progenote, 1

   as cenancestor, 10, 22

   definition, 6

   ribosomal structure, 9-10

   templated protein synthesis in, 26

Prokaryotes

   distinguishing features, 6-7

   eukaryotes vs., 6-7

   evolutionary forces, 41-42

   evolutionary model, 7-12

   evolutionary pathway, 12-16

   fossil record, 7

   introns in, 11

   Precambrian, 41-43

   rate of evolution, 1-2

   rRNA sequencing, 8-9, 11

Protein coding genes, 220-223

Proteobacteria, 9

Proterozoic eon

   acritarch evolution in, 73-80

   clade diversity in, 69

   eukaryotes in, 72

   paleontological data base, 69-72

   time scale, 64-66

Protistan

   Paleoproterozoic evolution, 2

   Proterozoic diversity peaks, 77-78, 79, 80

Protostomes, phylogenetic lineage, 95, 96

Punctuated equilibrium, 136-137, 269

R

rDNA, 9

Recombination rate, correlation with polymorphism, 276-283

Reef communities, 117

Replication

   earliest RNA genomes, 28-29

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   Mauriceville plasmid of Neurospora, 31-33

   as selectivity criteria, 140-141

   transitional genomes in, 31-33

   tRNA origins in, 26, 37-38

Reproduction

   asexual, 53

   evolutionary dynamics, 253

   rate of, 251

   tracheophyte model, 152-153

Restriction site polymorphism, 289, 292-294

Retroviruses, replication strategy, 31, 33

Ribonucleotide reduction, in RNA-DNA ancestors, 4-5

Ribosomal RNA

   arthropod, 96

   eukaryote-prokaryote lineage, 8-10, 11

   as molecular chronometer, 22

RNA

   3' terminal sequence, 28-30

   archaebacterial/eukaryotic linkage, 20

   earliest genomic tags, 28-29

   evolutionary role, 25-26

   introns early hypothesis, 11

   messenger, 1, 26

   origins of, 26

   See also Transfer RNA

RNase P, 29, 37

RuBisCo protein, 223-224, 226

S

Seaweeds, pre-Ediacaran, 68

Segment-polarity genes, 100-101

Selection, iv

   in adaptive landscape, 145-147, 261-262

   of alleles, 195

   in amino acid replacement, 230

   background selection model, 277-282

   balanced, 196-197, 199

   in chloroplast codon use, 220

   codical domain in, 140-142

   in E. coli cell size, 257, 259, 264-266

   emergent fitness hypothesis in, 140

   emergent trait hypothesis in, 139-140

   in experimental E. coli populations, 256

   extinction and, 86, 110-111, 117-120, 120, 123

   hierarchical theory, 137-142

   macroevolutionary theory, 86

   in species extinction, 86, 119-120

   in stasis of E. coli experimental populations, 268-269

Simpson, George Gaylord, iii-iv, v-vi, 3, 41, 287-288

   on bradytelic evolution, 53

   contributions of, 129-132

   evolutionary rate classification, 43

   on extinction, 111-112

   on human evolution, 167

   macroevolutionary theory and, 132-136, 142-143

Skeletal fossils, 90-91

   hominid evolution, 173-181

SOD. See Superoxide dismutase

Sonic hedgehog gene, 100-101

Specialization

   in cyanobacterial evolution, 53-56

   in Precambrian microbes, 41-42

   rate of evolution and, 53

Speciation

   definition, 187

   founder effect theories, 188-189, 197-201, 206

   gene polymorphism in, 193-196

   as mode of evolution, 131

   obstacles to research, 187-188

   Simpson on, 133

Species

   definition, 187

   duration, 195-196

   as paleontological unit of study, 69

   in selective extinction, 119-120

   trans-specific polymorphisms in, 191-193

Sulfolubus, 18

Superoxide dismutase

   action of, 237

   amino acid replacement in, 235

   covarions in, 236-237, 240, 243, 248

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.

   as molecular clock, 213-214, 243-248

   phylogeny, 237

   sequence analysis, 236-237

   structure, 237

T

Tachytelic evolution, 43, 131, 132

Taq DNA polymerase, 30

Telomerase, tRNA, 28, 30, 34-35, 37

Templated protein synthesis

   origins of tRNA replication before, 26, 28

   in progenote, 26

Tempo and Mode in Evolution, iii, v, 3, 41, 111-112

   human evolution in, 167

   significance of, 129-132

   theory in, 132-134

Tempo of evolution

   amino acid replacement in SOD, 235-236

   bradytelic, 43, 131-132

   chloroplast genome, 229-231

   chloroplast introns, 228-229

   constancy model, 213-214

   corresponding modes, 132

   cyanobacterial hypobradytely, 47-53

   definition, 3

   in detecting trans-specific polymorphisms, 192-193

   determinants of, v

   in experimental E. coli population, 266-269, 271

   hitchhiking hypothesis, 277

   horotelic, 43, 131, 132

   hypobradytelic, 43-44

   introns in acceleration of, 78

   in molecular research, 3

   nucleotide substitution in chloroplast genome, 221-223

   Paleoproterozoic, 2

   Phanerozoic, 52

   Precambrian, 41, 53

   Proterozoic-Cambrian acritarchs, 74-76, 78-80

   Proterozoic-Cambrian database, 67-69

   role of paleontology in, 130-131

   Simpson's model, v-vi, 131-132

   specialization and, 53

   tachytelic, 43, 131, 132

Tetrahymena, 34

Thermophiles, 12

   ranges of growth, 55

   tryptophan operans in, 18

Trace fossils

   early Cambrian, 91

   Vendian, 90, 95-96

Transcription, tRNA, 29

Transfer RNA

   5' processing, 29-30

   earliest genomic tags, 28-29

   evolutionary phylogeny, 26, 34-38

   nucleotidyltransferase, 28, 29, 30

   in replication, 31-33

   as replication primer, 33-34

   telomerase, 28, 30, 34-35, 37

   top half, 29, 35-36, 38

Triassic coal gap, 117

tRNA. See Transfer RNA

Tryptophan operans, 18

Turnip yellow mosaic virus, 29, 31, 33

U

Ultraviolet light, 55

Uniformitarianism, 126-127, 137, 229

V

Varanger ice age, acritarch evolution across, 72, 73, 74, 75-76

Vendian fauna, 89-90, 95-96, 101

   segmented bilaterians, 97, 98-99

Viruses

   genomic diversity, 30-31

   replication strategies, 31-34

W

Worms

   late Precambrian, 95-96, 98-99

   in metazoan evolutionary phylogeny, 102

Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 315
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 316
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 317
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 318
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 319
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 320
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 321
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 322
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 323
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 324
Suggested Citation: "Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
Page 325
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.