Previous Chapter: Biographical Data
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

INDEX

A

Acid rain, 5

Adaptive management, 51

Agroecosystems

   coevolutionary perspective, 20, 21-22, 24-25

   dispute resolution in, 170

   ecological health as goal of, 102

   grassland grazing, 36

   natural systems vs., 17

Alternative dispute resolution, 169-170

Asiatic clam, 22-23

Assessment of ecosystem health, 15-18

   in applied ecology, 112

   benchmark data, 103, 104

   conflict over methodology, 192-194

   constraints on human perception, 50-53

   in ecological engineering, 119-120

   ecological integrity, 102-105

   for ecologically sensitive project design, 143-144

   reversibility of environmental effects, 58-59

   values implicit in, 47-48

   See also Evaluation of engineering projects;

   Monitoring activities

Assimilative capacity, 3, 9 n.2

Automation, in complex systems, 67

B

Benchmark data, 103, 104

Biodiversity

   characteristics, 195 n.5

   in coevolution of human and natural systems, 21-22, 23

   ecosystem resilience and, 36-37, 39-40

   ecosystem services and, 16-17

   modeling, 55

   pollution response in ecosystems and, 83

   recommendations for maintaining, 27

   replacement species, 17

   worldwide species diversity, 144

Biosphere 2, 15

Biotechnology, 118

Birds, 27

Bonds, environmental assurance, 91-92, 93

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

C

California. See San Francisco Bay/San Joaquin Delta

Cattle grazing, 36

Chaotic state, 20-21, 40-41

Chemical pollution, 83, 103

Chesapeake Bay, 48

Chlorofluorocarbons, 69

Coevolution, 19-24

Collaboration, ecology-engineering

   to convince others, 4

   current practice, 2, 97-98, 111

   design of development projects, 144-145

   goals for, 67-68

   need for, 1-2, 105-106, 185

   obstacles to, 6, 73

   oil development in rain forest, 144-157

   opportunities for, 134-135

   political context, 132-134

   receptivity of students, 130-131, 134

   science education and, 75-76

   science policy and, 74-75

   as scientific enterprise, 73

   successful development projects, 143

   systems analysis, 131-132, 134-135

   See also Ecological engineering

Command-and-control systems, 91

Commons model, 50, 65

Communications systems, 70

Compartmental analysis, 84

Complex systems, 4

   automation in, 67

   coevolutionary processes, 20-21

   energy organization in, 83-85

   human comprehension, 50, 52-53

   natural regulation, 7

   policymaking in, 73-74

   problem-solving in, 70

   quantification of interconnections in, 84-85

   revenge theory, 71-72

   substitutions/replacements in, 17, 71-72

   transportation systems as, 70-71

   values implicit in study of, 48

Consumer behavior, 9

Corps of Engineers, U.S. Army, 6, 111, 193-194

   resource management philosophy, 187-189

D

Darns, 3

Description, scientific, 47-48

Design for environment, 4

Design process

   ecological consideration in, 1-2, 111

   ecological vs. engineering approach, 130

   ecologically sensitive development projects, 143-144

   economic conceptualizations, 133, 136 n.7

   environmentally harmful outcomes, 2

   environmentally sensitive engineering, 68

   Niobrara River engineering, 184

   oil development project, 148-157

   precautionary practice, 5-6

   problem definition, 2-4

   uncertainty in, 5, 6

Developing world, 67

Differences between ecology and engineering

   conceptualizations of sustainability, 129-130

   expectations, 6

   perception of system resilience, 32-34

   problem definition, 105

E

Earth Summit (1992), 98-99

Earthquakes, 8

Ecological constraints on engineering

   definition of design success, 2-4

   ethical consideration, 66, 67, 194-195

   indications for, 1-2

   modeling, 4

   principles for, 66-68

   in transportation engineering, 68-70

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

Ecological economics, 19

   valuation of ecosystem services, 14

Ecological engineering

   applied, 116

   biotechnology and, 118

   conservation ethic, 117-118, 194-195

   definitions, 112-113, 114-115

   environmental engineering and, 118

   goals, 113

   historical development, 112, 113-115

   as integrative discipline, 123, 125-126

   principles of, 115

   recent developments, 124-125

   resource conservation in, 117

   restoration ecology and, 119

   role of, 123-124

   self-design concept in, 115-116

   as system approach, 116-117

   systems analysis in, 119-120

   See also Collaboration, ecologists and engineers

Economics

   conceptualizations of ecosystem services, 14-15

   conceptualizations of equilibrium, 33

   engineering conceptualizations, 133, 136 n.7

   environmental accounting, 66-67, 68, 92-94

   environmental assurance bonding, 91-92, 93

   flexibility in resource management and, 7

   identifying ecological costs, 92

   individual behavior, 86

   market diversity, 83

   mixed-unit valuation, 85

   modeling system interactions in, 84-85

   natural resource depreciation, 66-67

   sustainability concepts in, 177

   technological uncertainty and, 87-88

   temporal orientation, 54

   valuation, 59-60

   vs. ecosystem health, 23-24

Ecosystem functioning

   causes of failure, 191-192

   concept of sustainability, 81-85

   conservation philosophy, 191-192

   constraints on human perception, 50-53

   development projects in natural habitats, 141-144

   diversity in, 83

   ecological resilience, 38-42

   engineering production philosophy, 190-191

   engineering resilience, 36-38

   equilibrium state, 32, 33, 51

   health of vs. integrity of, 100-102

   hierarchy theory, 51-52

   keystone processes, 60

   life span assessment, 81

   nature of change in, 31-32

   near instability, 40-41

   production-based vs. conservation-based perspectives, 187-190

   as public property, 50

   restoration project objectives, 178-179

   scalar problems in modeling, 46-50

   scientific understanding, 31-32, 47

   self-organization in, 115-116

   spatial attributes, 32

   sustainability, 39, 81-83

   threats to, 99-100

   tropical rain forest, 144-145

   See also Assessment of ecosystem health;

   Healthy systems

Ecosystem services, 2

   in balance with technological services, 24-27

   defined, 13-14

   ecosystem health and, 15-18

   historical use, 20

   human technology and, 20-24

   human well-being and, 18-19

   identification of, 14

   perception of, 14

   population growth and, 26

   recommendations for maintaining, 27

   social consumption of, 13-14

   technological alternatives, 15

   valuation of, 14-15

Ecotechnology, 114

Educational system, 75-76

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

   as setting for ecological-engineering collaboration, 130-131, 134, 158-159

Emergency responses, 68

Endothermy, 7, 39-41

Energy

   in definition of ecology, 113-114

   electricity consumption, 15

   optimistic/pessimistic expectations, 88

   sustainability of systems and, 82, 83-85

Environmental engineering, 118

Environmental Protection Agency, 173-175

Ethical issues, 66, 67, 72-73, 194-195

   avoiding social traps, 90-91

Eutrophication

   defined, 82

   system functioning, 82-83

Evaluation of engineering projects

   ecological considerations in, 106

   ecological criteria, 2-4

   ecologically sensitive development projects, 142

   engineering production philosophy, 190-191

   iterative testing process, 170-171, 176 n.5

   long-term considerations, 9

   multiscalar decision making metamodel for, 57-62

   restoration project objectives, 178-179

   sustainability issues in, 177

Everglades. See Kissimmee River project

Evolutionary processes, 20-25

   ecological integrity and, 101

   human behavior and, 86

   nonpolluting ecosystems, 82

Exotic species, 18, 22-23

Expectations

   ability to manage ecosystems, 6-7

   differences between ecologists and engineers, 6

   regarding technological services, 13

Extinction of species, 23, 25

F

Fertility trends, 190

Fisheries management, 37-38

Flow analysis, 84

Forest management, 17, 37, 41-42

   oil development in rain forest, 144-145, 149-157

Future generations, valuation issues, 54

G

Game theory, 88-89

Global interaction, 56

   ecological tariffs, 93-94

   environmental accounting, 92-93

   environmental awareness, 98-99

Global warming, 5, 16

Grasslands, 4, 36

H

Harmful outcomes, 2

   in coevolution of human and natural systems, 21-24

   environmental assurance bonding against, 91-92, 93

   environmental modeling, 57-62

   exotic invader species, 22-23

   expectations of, among scientists, 6

   human capacity to cause, 53

   human capacity to prevent, 6-7

   in human engineering, 129

   implications of uncertainty for policymaking, 5-6

   Kissimmee River project, 164

   as long-term effects, 8-9

   oil exploration/development, 145

   recognition of, 97

   San Francisco Bay/San Joaquin Delta management, 167-168

Healthy systems

   biodiversity, 16-17

   change processes, 31-32

   characteristics of, 101-102, 195 n.5

   evaluation of, 102-105

   human well-being and, 18-19, 97

   integrity of systems, 100-102

   productivity in, 15-18

   public understanding, 18-19, 25

   resilience, 18

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

   restoring ecosystems, 26-27

   scalar factors in defining, 47

   technological optimism/pessimism, 87-88

   thresholds, 17

Hierarchy theory, 51-52, 59-60

Human Development Index, 67

Hydropower, 177

I

Illinois Waterway, 187, 192-194, 195 n.1

Indigenous peoples, 150-151

Individual decision making, 9

   commons model, 50, 65

   determinants of, 19

   evolutionary factors, 86

   game theory, 88-89

   hierarchy theory, 51-52

   policy scale, 55-56

   social traps in, 86-87

   system interactions, 86

Industrial processes, 68

Information feedback in natural systems, 20

Innovation

   in policymaking, 91-94

   precautionary practice and, 5-6

Input-output analysis, 84, 85

Interdisciplinary initiatives

   ecotechnology as integrative discipline, 123-124, 125-126

   for policymaking, 97-98

International comparison, quality of life, 67

International relations, 21

Iterative testing process, 170-171, 176 n.5

J

Jefferson, Thomas, 74-75

K

Keystone processes, 60

Kissimmee River project, 2, 3, 111

   litigation over, 171-172

   management strategies, 169-170, 178, 179, 182-184

   overview, 164-166

   public controversy, 169

   recent developments, 172

   restoration objectives, 179-181

   significance of, 163, 172, 175

L

Labor-time-saving devices, 71

Language of science, 47-48

Life-cycle analysis

   application, 4

   ecosystems, 81

Life span

   behavior and, 86

   quality of life and, 80-81

Local conditions

   global considerations, 76, 93

   land planning, 68

   regional ecosystem management strategies, 7, 16-17

   resource management, 17-18, 104

Long-term effects, 8-9

   of ecotechnology practice, 124

   of engineering in natural habitats, 141-142

   social traps, 86-87

   technology development and, 86, 106

   uncertainty effects and, 87-89

   water resource management, 103, 175

M

Materials balance approach, 84

Migratory species, 27

Mississippi River, 6, 111, 187, 192-194, 195 n.1

Models

   behavior of complex systems, 84

   commons concept, 50, 65

   decision making metamodel, 57-62

   ecological constraints on design, 4

   ecological engineering, 116-117

   ecosystem failure, 191-192

   ecosystem stability, 33-34

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

    

   environmental problems as scalar problems, 46, 55

   game theory, 88-89

   global ecology, 93

   hierarchy theory, 52

   multimetric, 104-105

   multivariable problems, 71

   Newtonian, 45, 46-47

   transportation systems, 70-71

   uncertainty effects, 5-6, 87-88

   values implicit in choice of, 46, 47

   water management, 105

Monitoring activities, 7

   Kissimmee River flood control, 183-184

   long-term, 175

   oil development project, 157-159

   San Francisco Bay/San Joaquin Delta water management, 174-175

N

National Environmental Policy Act, 189, 193, 195 n.2

Network analysis, 84-85

New technology, 5-6

Niobrara River, 3, 178, 184

Non-point-source pollution, 48

Nonrenewable resources, 3

Nonsuch Island, 23

O

Oil development/exploration, 3

   harmful effects, 145

   offshore model, 152-154

   pipeline options, 154-157

   process, 146-147

   rain forest project, 144-157

   science and engineering needs, 157-159, 160-161

   strategies to minimize impacts, 148-154

   sustainability issues, 159-160

Oil exploration

   ecologically sensitive projects, 142

Opportunity costs, 6

Organized labor, 99

P

Pareto Optimality criterion, 61-62

Pesticides, 21, 40-41

Policy-making

   alternative dispute resolution in, 169-170

   to avoid social traps, 90

   command-and-control approach, 91

   conservation philosophy, 192

   constant yield goals in, 32

   ecological health as goal of, 101-102

   engineering production philosophy, 190, 191

   environmental knowledge for, 25, 27

   environmental modeling for, 55

   implications of uncertainty, 5

   interaction of engineering and ecology and, 68, 73-75

   interdisciplinary initiatives, 97-98

   Kissimmee River management, 163, 169-172

   metamodel for, 57-62

   micromanagement in, 73

   motivation for, 19-20

   optimistic vs. pessimistic approach, 89

   Pareto criterion, 61-62

   pluralistic approach, 46

   precautionary approach, 5-6, 93

   problem formulation, 48

   production-based vs. conservation-based approaches, 187-190

   recommendations for sustainability, 91-94

   San Francisco Bay/San Joaquin Delta management, 173-175

   Scalar considerations, 55-56

   tax reform, 93

   water management, 103-104

   waterway navigation system, 192-194

Pollution

   boundaries, 3

   chemical, 83, 103

   definition, 81-82

   ecosystem response, 83

   energy/entropy characteristics, 82, 83-85

   eutrophication as, 82-83

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

   evolutionary perspective, 82

   polluter assurance bonding against, 91-92, 93

   scalar issues in study of, 48

   as social trap, 87

   sustainable use, 81-82, 83

   transportation-related, 69

   water, 103

Population growth

   ecological threat of, 24-25, 26

   optimistic/pessimistic expectations, 88

   public understanding of, 19

   quality of life and, 74

   social goals, 27

   Stabilization, 26

   trends, 25-26

Precautionary principle, 5-6, 93

Primitive peoples, 24

Probability, uncertainty and, 5-6

Problem definition, 2-4

   in concept of sustainability, 79

   engineering vs. environmental approach, 105

   sociohistorical trends, 65

   values implicit in scalar choices, 48

Production-based philosophy

   in engineering, 190

   limitations of, 190-191

   vs. conservation-based approaches, 187-190

Productivity, 7

   conceptualizations of natural systems, 135 n.2

   ecosystem health and, 15-18

   scale discontinuity in ecosystems, 32

Public interest, commons model, 50, 65

Public perception/understanding, 68

   to avoid social traps, 90

   current awareness of environmental issues, 98-99

   of ecosystem health, 18-19, 25, 106

   knowledge needs, 27

   quantification of ecosystem services, 16

   questions of scale, 45-46

Q

Quagga mussel, 22-23

Quality of life

   in built environment, 67

   goals, 72-73

   life span considerations, 80-81

   obligations of engineering profession, 67-68

   population growth and, 74

   quality of environment and, 65-66, 100

R

Recreational activities, 17

Renewable resources, 3

Resilience of ecosystems, 18

   conceptualizations of, 32-34

   ecological management for, 38-42

   engineering conceptualization, 33-34

   engineering management for, 36-38

   system variability and, 39-40

Resource management

   adaptive, 51

   boundaries of use, 3

   challenges, 6-8

   ecological engineering principles, 117-118

   ecological health as goal of, 101-102

   economic reliance upon, flexibility and, 7

   ecosystem resilience and, 38-42, 51

   engineering resilience and, 36-38

   human development and, 24-25, 86, 101

   innovative policy-making, 91-94

   iterative testing process, 170-171, 176 n.5

   local vs. global, 17-18

   monitoring effects of, 7

   natural processes vs., 7

   population growth and, 26

   production-based vs. conservation-based approaches, 187-192

   species replacement, 17

Restoration ecology, 26-27, 52

   ecological engineering and, 112, 113, 116, 119

   Kissimmee River objectives, 179-181

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

   objectives for streams and rivers, 178, 181-182

Revenge theory, 8, 71-72

Rio Summit. See Earth Summit (1992)

Risk(s)

   de minimis concept, 195 n.4

   definition, 5

   model for environmental decision making, 57-62

S

Safety factors design, 6

San Francisco Bay/San Joaquin Delta

   management strategies, 173-175

   overview, 166-169

   significance of water management experience, 163, 175

Scientific method

   applied vs. pure research, 74-75

   contributions of, 73

   in ecological engineering, 119-120, 125-126

   education and training for, 75-76

   evaluative content, 47-48

Social engineering, 67

Social traps, 23-24, 86-87

   educational prescriptions, 90

   policy prescriptions, 90

   sociocultural prescriptions, 90-91

   technological uncertainty and, 87-89

Social values, 8-9

   in adaptive management techniques, 51-52

   commons model, 50

   determinants of, 50-51

   ecosystem services, 14

   hierarchical thinking, 52

   implicit in environmental models, 46, 47

   interdisciplinary examination of, 47

   scalar problems, 45, 46, 48

   temporospatial scaling in, 53-57, 61

   See also Valuation

Sociocultural context, 1

   avoiding social traps, 90-91

   benefits of ecologically sensitive engineering, 2-3

   consumption of ecological services, 13-14, 24

   evolutionary processes, 86

   expectations regarding technological services, 13

   identifying ecological costs, 92

   individual interests vs. social interests, 8-9

   infrastructure as expression, 72

   perception of ecological services, 14

   policy scales, 55-56

   problems of scale in, 45

   rain forest development considerations, 145-146, 150-151

   science in, 76

   See also Social values

Spatial/temporal scales

   attributes of ecosystem functioning, 32

   in concept of sustainability, 79-81

   current conceptualizations, 45

   in engineering design, 133

   environmental problems as scalar problems, 46-50

   hierarchy theory, 52

   human perception of, 50-53

   human values and, 53-57

   modeling environmental effects, 58-59

   modernist conceptualizations, 45, 46-47

   perspectivist view, 45-46

   phenomenology, 61

Stabilization

   ecological health vs. ecological integrity, 100-102

   ecosystem equilibrium, 32, 51

   ecosystem resilience, 33-34, 38

   population growth, 26

   as restoration project objective, 178-179

Standard of living, 25

   environmental accounting, 66-67

   Human Development Index, 67

Sustainability, 1

   conservation philosophy, 191-192

   definitions, 9 n.1, 79-81, 177-178

   in development projects, 177, 178

   ecological concerns, 129-130

   ecological engineering goals, 117

   economic concept, 177

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.

   ecosystem services and, 14

   engineering conceptualizations, 129

   environmental accounting, 92-94

   legal threshold, 195 n.4

   in natural systems, 39, 41-42, 81-85

   prediction of, 79-80

   technological development issues, 159-160

   temporospatial concepts embedded in, 79-81

   temporospatial thinking, 54-55

Systems perspective, 4

   coevolution, 19-24

   component interaction, 83, 84

   concept of resilience, 32-33

   concept of sustainability, 9 n.1, 79-81

   in ecological engineering, 116-117, 119-120

   ecosystem health in, 15-18

   eutrophication processes, 82-83

   individual behavior in, 86

   natural systems, 7

   political context, 132-134

   revenge theory, 8-9, 71-72

   role of diversity, 83

   self-organizing behaviors, 115-116

   similarities in ecology and engineering, 131-132, 134-135

   in water quality monitoring, 175

T

Tariffs, 93-94

Tax reform, 93

Taxes, 172

Technological optimism/pessimism, 87-89

Technological services

   in balance with ecosystem services, 24-27

   current consumption, 13

   human development and, 24-25

Threshold concept, 17, 195 n.4

Transportation systems

   complexity of, 70-71

   environmental issues, 69-70

   pollutants, 69

U

Uncertainty, 5-6

   in origin of social traps, 87-89

Unknown unknowns, 5, 6

Unknowns, 5

Urban populations, 69, 70

V

Valuation

   determinants of, 51

   in economics, 59-60

   ecosystem services, 14-15, 16

   environmental, in engineering accounting, 66, 68

   mixed-unit, 85

   scalar problems, 46

   spatiotemporal consideration, 52

   See also Social values

W

Water management, 3, 7

   benchmark data, 103, 104

   California drinking water, 8

   Chesapeake Bay cleanup, 48

   ecological goals, 177

   evaluation of river ecosystems, 4

   flood control, 182-184

   hydropower initiatives, 177

   measurement and evaluation practices, 102-103

   multimetric modeling, 104-105

   navigation systems, 187, 192-194

   policy, 103-104

   production-based vs. conservation-based approaches, 187-190

   restoration project objectives, 178-179

   threats to, 103

   See also Kissimmee River project;

   San Francisco Bay/San Joaquin Delta

Wetlands development, 142, 158

Whooping Cranes, 184

Z

Zebra mussel, 22-23

Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
This page in the original is blank.
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 205
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 206
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 207
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 208
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 209
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 210
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 211
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 212
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 213
Suggested Citation: "Index." National Academy of Engineering. 1996. Engineering Within Ecological Constraints. Washington, DC: The National Academies Press. doi: 10.17226/4919.
Page 214
Subscribe to Email from the National Academies
Keep up with all of the activities, publications, and events by subscribing to free updates by email.