The preceding chapters present recommendations for research and research priorities in a wide range of disciplinary and interdisciplinary fields relevant to space biology and medicine. This chapter considers the question of overall priorities for research supported by the National Aeronautics and Space Administration (NASA) in the next decade, taking into account budgetary realities and the need for clearly focused programs.
The highest priority for NASA support should be given to research meeting the following criteria:
A lower priority should be assigned to areas of basic and applied research that are relevant to fields of high priority to NASA but are extensively funded by other agencies, and in which NASA has no obvious unique capability or special niche.
In the near term, until the research facilities of the International Space Station come online or an additional Spacelab mission is provided, NASA-supported research will necessarily be largely directed toward ground-based investigations designed to answer fundamental questions and frame critical hypotheses that can later be tested in space. Indeed, as the preceding chapters have emphasized, understanding the basic mechanisms underlying biological and behavioral responses to spaceflight is essential
for designing effective countermeasures and protecting astronaut health and safety both in space and upon return to Earth. For these reasons, the following recommendations for high-priority areas of research over the entire life sciences program place greater emphasis on ground-based studies.
The committee considers the following areas of research to be the most important for ensuring astronaut health, safety, and performance during and after long-duration spaceflight. The specific order of research priorities among these areas is likely to shift depending on the nature of the planned missions; for this reason the topics are not presented in an order of priority.
Bone and muscle deterioration is one of the best-documented deleterious effects caused by spaceflight in humans and animals. The reduction in bone mass has been shown to exceed 1 percent per month in weight-bearing bones, even when an in-flight exercise regime was followed, making this one of the major barriers to long-term human space exploration. Dramatic losses in strength and changes in functional properties of weight-bearing muscles have also been observed even after short-duration flights. Exercise has been only partially successful in preventing bone loss and muscle weakness. Development of effective countermeasures requires advances in several areas of basic research.
Over the past 10 years, extensive experimental research has been conducted on humans to better understand how the space environment affects the control of posture and movement in astronauts. Because of this, considerable information is now available regarding spatial orientation, postural control, the vestibular ocular reflex (VOR), and space motion sickness in microgravity. In future work, it will be important to extend these findings from human studies to mechanistic studies in suitable animal models. This should provide a better understanding of the basic mechanisms operating at the cellular and molecular levels in the control of posture and movement in microgravity.
We know that compensatory mechanisms function effectively in the vestibulomotor pathways on Earth and that compensatory mechanisms also occur in space.
Significant progress in cardiovascular research occurred during the 1990s on a series of Spacelab missions, but orthostatic hypotension, present since the earliest human spaceflights, still affects a high percentage of astronauts returning from flights of relatively short duration. It is an even greater problem for shuttle pilots, who must perform complex reentry maneuvers in an upright, seated position. The incidence and magnitude of orthostatic hypotension will increase with longer-duration flights planned for the space station and both lunar or Mars missions. The problem remains despite the use of extensive antiorthostatic countermeasures by both U.S. and Russian space programs. The committee recommends several areas of research.
The biological effects of exposure to radiation in space pose potentially serious health effects for crew members that must be controlled or mitigated before initiation of long-term missions beyond low Earth orbit. High priority is given to the following.
The immune system has close interactions with the neuroendocrine system. Results of these studies indicate a close association between alterations in status of the immune system and the state of the neuroendocrine system of the host.
Interactions between the hypothalamic-pituitary-adrenal (HPA) axis and the immune system during spaceflight should be analyzed to determine the role that the host response to stressors plays in alterations in host defenses.
Aspects of living and working in space that have been well-tolerated by astronauts during short-duration missions are likely to have significant impacts on health, well-being, and performance during long-duration missions. Mechanisms of response to physiological and psychosocial stressors encountered in spaceflight must be better understood in order to ensure crew safety, health, and productivity during prolonged residence in space. These mechanisms require an interdisciplinary approach since many of the physiological changes (e.g., endocrine, immune, cardiovascular, neurovestibular) likely to occur during prolonged exposure to microgravity will have important implications for behavior and performance. Likewise, many of the characteristics of the psychosocial environment of long-duration missions—such as interpersonal conflicts, restrictions on privacy and territoriality, social monotony, and prolonged isolation from family and friends—have important implications for these physiological systems by virtue of their influences on the HPA axis.
Research is recommended in two areas, both of which will require the development of noninvasive techniques for the ongoing assessment of behavior and performance.
Multicellular plants respond to changes in the direction of the gravitational vector by altering the direction of growth of roots and stems. The gravitropic response requires (1) perception of the gravitational vector by gravisensing cells, (2) intracellular transduction of this information, (3) translocation of the resulting signal to the sites of reaction (i.e., sites of differential growth), and (4) reaction to the signal by the responding cells (i.e., initiation of differential growth). In some systems, the gravity-perceiving cell is also the site of reaction (e.g., in the Chara rhizoid).
Work on space research is concerned with whether those parts of the vestibular system that are gravity sensitive (otolith organs) can develop and function adequately in microgravity. In addition, it is important to determine whether gravity influences the sensory systems that depend for their development and function on vestibular input. This includes the other sensory systems that interact directly with the vestibular system, the multiple brain regions containing neural space maps, and finally those areas in the brain capable of responding to alterations in their activity by neuroplastic changes.
To determine whether there are developmental processes that are critically dependent upon gravity, organisms should be grown through at least two full generations in space.