Abowd, J., Stinson, M., & Benedetto, G. (2006). Final report to the Social Security Administration on the SIPP/SSA/IRS public use file project. https://ecommons.cornell.edu/items/d7cf980e-5ec3-4322-aea2-a58b344c3ac6
Abowd, J. M., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Heineck, M., Heiss, C., Johns, R., Kifer, D., Leclerc, P., & Machanavajjhala, A. (2022). The 2020 Census disclosure avoidance system TopDown Algorithm. Harvard Data Science Review, (2). https://hdsr.mitpress.mit.edu/pub/7evz361i/release/2
Abowd, J. M., & Velkoff, V. A. (2020). Modernizing disclosure avoidance: What we’ve learned, where we are now. https://www.census.gov/newsroom/blogs/research-matters/2020/03/modernizing_disclosu.html
Adam, N. R., & Worthmann, J. C. (1989). Security-control methods for statistical databases: A comparative study. ACM Computing Surveys, 21(4), 515–556. https://dl.acm.org/doi/abs/10.1145/76894.76895
Advisory Committee on Data for Evidence Building. (2021). Advisory Committee on Data for Evidence Building: Year 1 report. https://www.bea.gov/system/files/2021-10/acdeb-year-1-report.pdf
______. (2022). Advisory Committee on Data for Evidence Building: Year 2 report. https://www.bea.gov/system/files/2022-10/acdeb-year-2-report.pdf
Afnan, T., Zou, Y., Mustafa, M., Naseem, M., & Schaub, F. (2022). Aunties, strangers, and the FBI: Online privacy concerns and experiences of Muslim-American women. Eighteenth Symposium on Usable Privacy and Security. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C9&q=afnan%2C+tanisha&oq=afnan%2C+tanis
Alexander, J. T., Davern, M., & Stevenson, B. (2010). Inaccurate age and sex data in the census PUMS files: Evidence and implications (NBER Working Paper No. 15703). National Bureau of Economic Research. https://www.nber.org/papers/w15703
Altman, M., Cohen, A., Nissim, K., & Wood, A. (2021). What a hybrid legal-technical analysis teaches us about privacy regulation: The case of singling out. Journal of Science and Technology Law, 27(1). https://heinonline.org/HOL/Page?handle=hein.journals/jstl27&div=4&g_sent=1&casa_token=&collection=journals
Altman, M., Wood, A., O’Brien, D. R., Vadhan, S., & Gasser, U. (2015). Towards a modern approach to privacy-aware government data releases. Berkeley Technology Law Journal, 30(3), 1967–2072. https://www.jstor.org/stable/26377584
American Statistical Association. (2022). Ethical guidelines for statistical practice. https://www.amstat.org/your-career/ethical-guidelines-for-statistical-practice
Arezki, S., & Elhissi, Y. (2018). Toward an IT governance maturity self-assessment model using EFQM and CobiT. Proceedings of the International Conference on Geoinformatics and Data Analysis, 198–202. https://doi.org/10.1145/3220228.3220265
Auxier, B., Rainie, L., Anderson, M., Perrin, A., Kumar, M., & Turner, E. (2019). Americans and privacy: Concerned, confused and feeling lack of control over their personal information. Pew Research Center: Internet, Science & Technology. https://policycommons.net/artifacts/616499/americans-and-privacy/1597152/
Barrientos, A. F., Bolton, A., Balmat, T., Reiter, J. P., de Figueiredo, J. M., Machanavajjhala, A., Chen, Y., Kneifel, C., & DeLong, M. (2018). Providing access to confidential research data through synthesis and verification: An application to data on employees of the US federal government. Annals of Applied Statistics, 12(2). https://projecteuclid.org/journals/annals-of-applied-statistics/volume-12/issue-2/Providing-access-to-confidential-research-data-through-synthesis-and-verification/10.1214/18-AOAS1194.full
Barrientos, A. F., Williams, A. R., Snoke, J., & Bowen, C. (2021). Differentially private methods for validation servers. Urban Institute. https://www.urban.org/sites/default/files/publication/105104/differentially-private-methods-for-validation-servers_1.pdf
______. (2023). A feasibility study of differentially private summary statistics and regression analyses for administrative tax data. ArXiv. https://arxiv.org/pdf/2110.12055.pdf
Basic HHS Policy for Protection of Human Research Subjects, 82 C.F.R. 7259 (a) (2018). https://www.ecfr.gov/on/2018-07-19/title-45/subtitle-A/subchapter-A/part-46
Beatty, L., & Scott, K. (2023, May 25). Record linkage in the survey of prison inmates [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/DE88EC586B580FA91FAF7F0EBFFFA97233DC97A99B0B?noSaveAs=1
Bethlehem, J. G., Keller, W. J., & Pannekoek, J. (1990). Disclosure control of microdata. Journal of the American Statistical Association, 85(409), 38–45. https://doi.org/10.2307/2289523
Bowen, C., & Snoke, J. (2023). Do no harm guide: Applying equity awareness in data privacy methods. Urban Institute. https://policycommons.net/artifacts/3525920/do-no-harm-guide/4326655/
Bowen, C. M. (2021). Protecting your privacy in a data-driven world. Chapman and Hall, CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/9781003122043/protecting-privacy-data-driven-world-claire-mckay-bowen
Bowen, C. M., Williams, A., & Pickens, M. (2022). Decennial disclosure: An explainer on formal privacy and the TopDown Algorithm. Research Methods and Data Analytics. Urban Institute. https://www.urban.org/sites/default/files/2022-09/Decennial%20Disclosure%20Explainer.pdf
boyd, d., & Sarathy, J. (2022). Differential perspectives: Epistemic disconnects surrounding the U.S. Census Bureau’s use of differential privacy. Harvard Data Science Review, (2). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4077426
Brunson, D., Cheatham, T., Yockel, S., Schmitz, P., & Mizumoto, C. (2021). CI CoE: Demo pilot: Advancing research computing and data: Strategic tools, practices, and professional development. Office of Advanced Cyberinfrastructure [Grant No. 2100003]. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2100003
Bun, M., & Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions, and lower bounds. In M. Hirt & A. Smith (Eds.), Lecture notes in computer science (Vol. 9985, pp. 635–658). Springer. https://link.springer.com/chapter/10.1007/978-3-662-53641-4_24
Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., & Song, D. (2019, August 14–19). The secret sharer: Evaluating and testing unintended memorization in neural networks [Conference session]. 28th USENIX Security Symposium. Santa Clara, CA. https://www.usenix.org/system/files/sec19-carlini.pdf
Chetty, R., & Friedman, J. N. (2019). A practical method to reduce privacy loss when disclosing statistics based on small samples. AEA Papers and Proceedings, 109, 414–420. https://www.aeaweb.org/articles?id=10.1257/pandp.20191109
CHIPS Act, Pub. L. No. 117–167, 136 Stat. 1366 (2022). https://www.govinfo.gov/content/pkg/PLAW-117publ167/pdf/PLAW-117publ167.pdf
Cohen, A. (2022). Attacks on deidentification’s defenses. Proceedings of the 31st USENIX Security Symposium, 1469–1486. https://www.usenix.org/conference/usenixsecurity22/presentation/cohen
Cohen, A., & Nissim, K. (2018). Linear program reconstruction in practice. ArXiv. https://arxiv.org/abs/1810.05692
______. (2020). Towards formalizing the GDPR’s notion of singling out. Proceedings of the National Academy of Sciences, 117(15), 8344–8352. https://doi.org/10.1073/pnas.1914598117
Coleridge Initiative. (2023). Administrative data research facility mangement portal. https://coleridgeinitiative.org/administrative-data-research-facility
Commission on Evidence-Based Policymaking. (2017). The promise of evidence-based policymaking. https://bipartisanpolicy.org/wp-content/uploads/2019/03/Full-Report-The-Promise-of-Evidence-Based-Policymaking-Report-of-the-Comission-on-Evidence-based-Policymaking.pdf
Committee on Economic Statistics. (2022). Updating national economic statistics with real time data: Challenges and opportunities. American Economics Assocation. www.aeaweb.org/content/file?id=16582
Consolidated Appropriations Act, Pub. L. No. 106–554, 114 Stat. 2763 (2000). https://www.govinfo.gov/content/pkg/PLAW-106publ554/pdf/PLAW-106publ554.pdf
Cordell, L. (2023, May 23). Privacy considerations in merging sensitive data: Case study of the CARES 3509 Act Mortgage Forbearance Program [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C-41C0A42D3BE-F0989ACAECE3053A6A9B/file/D6F9C3BCAFC3BF44ABA470156156E1B31A84797966E3?noSaveAs=1
Couper, M. P., Singer, E., Conrad, F. G., & Groves, R. M. (2010). Experimental studies of disclosure risk, disclosure harm, topic sensitivity, and survey participation. Journal of Official Statistics, 26(2), 287–300. https://pubmed.ncbi.nlm.nih.gov/21765576/
Cox, L. H. (1980). Suppression methodology and statistical disclosure control. Journal of the American Statistical Association, 75(370), 377–385. https://doi.org/10.1080/01621459.1980.10477481
Cramer, R., & Damgård, I. B. (2015). Secure multiparty computation. Cambridge University Press. https://assets.cambridge.org/97811070/43053/frontmatter/9781107043053_frontmatter.pdf
Culnane, C., & Rubinstein, B. (2023, May 22). Not fit for purpose: A crititcal analysis of the ‘Five Safes’ [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D62A51BFCDE564ADE87298F4D712CC822120B20395AE?noSaveAs=1
Culnane, C., Rubinstein, B., & Watts, D. (2020). Not fit for purpose: A critical analysis of the ‘Five Safes’. ArXiv. https://arxiv.org/abs/2011.02142
Dauberman, K., & Arnesberger, P. (2023, May 23). Statistics of Income: College Scorecard project [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/DBCBD39AA214722AEE1DE79111766F41944434F16413?noSaveAs=1
Department of Labor. (n.d.). Appendix A: The vital importance of the unemployment insurance (UI), quarterly census of employment and wages (QCEW), and local area unemployment statistics (LAUS). https://www.dol.gov/sites/dolgov/files/ETA/advisories/TEN/2020/TEN_14-19_Attachment_1.pdf
Desai, T., Ritchie, F., & Welpton, R. (2016). Five safes: Designing data access for research. Economics Working Paper Series, 1601, 28. https://www2.uwe.ac.uk/faculties/BBS/Documents/1601.pdf
Dick, T., Dwork, C., Kearns, M., Liu, T., Roth, A., Vietri, G., & Wu, Z. S. (2023). Confidence-ranked reconstruction of census microdata from published statistics. Proceedings of the National Academy of Sciences, 128(8), e2218605120. https://www.pnas.org/doi/10.1073/pnas.2218605120
Dinur, I., & Nissim, K. (2003). Revealing information while preserving privacy. Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 202–210. https://doi.org/10.1145/773153.773173
Domina, T., Pharris-Ciurej, N., Penner, A. M., Penner, E. K., Brummet, Q., Porter, S. R., & Sanabria, T. (2018). Is free and reduced-price lunch a valid measure of educational disadvantage? Educational Researcher, 47(9), 539–555. https://journals.sagepub.com/doi/full/10.3102/0013189X18797609
Domingo-Ferrer, J., Sánchez, D., & Soria-Comas, J. (2016). Quantifying disclosure risk: Record linkage. In J. Domingo-Ferrer, D. Sánchez, & J. Soria-Comas (Eds.), Database anonymization: Privacy models, data utility, and microaggregation-based inter-model connections, 25–29. Springer International Publishing. https://doi.org/10.1007/978-3-031-02347-74
Dong, J., Roth, A., & Su, W. J. (2022). Gaussian differential privacy. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(1), 3–37. https://arxiv.org/abs/1905.02383
Drechsler, J. (2011). Synthetic datasets for statistical disclosure control: Theory and implementation. Lecture notes in statistics (Vol. 201). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-1-4614-0326-5
Duncan, G. T., Mark, E., & Salazar-González, J.-J. (2011). Statistical confidentiality. Springer. https://link.springer.com/book/10.1007/978-1-4419-7802-8
Dwork, C., Adam, S., Thomas, S., & Ullman, J. (2017). Exposed! A survey of attacks on private data. Annual Review of Statistics and Its Application, 4(1), 61–84. https://doi.org/10.1146/annurev-statistics-060116-054123
Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In S. Halevi & T. Rabin (Eds.), Lecture notes in computer science: Theory of cryptography (Vol. 3876, pp. 265–284). Springer. https://doi.org/10.1007/11681878_14
Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3-4), 211–407. http://dx.doi.org/10.1561/0400000042
Dwork, C., & Ullman, J. (2018). The Fienberg problem: How to allow human interactive data analysis in the age of differential privacy. Journal of Privacy and Confidentiality, 8(1). https://journalprivacyconfidentiality.org/index.php/jpc/article/view/687
E-Government Act, Pub. L. No. 107–347, 116 Stat. 2899 (2002). https://www.congress.gov/107/plaws/publ347/PLAW-107publ347.pdf
Elamir, E. A., & Skinner, C. J. (2004). Record-level measures of disclosure risk for survey microdata (S3RI Methdology Working Papers No. M04/02). https://eprints.soton.ac.uk/8175/
Equitable Data Working Group. (2022). A vision for equitable data: Recommendations from the Equitable Data Working Group. https://www.whitehouse.gov/wp-content/uploads/2022/04/eo13985-vision-for-equitable-data.pdf
Evans, D., Kolesnikov, V., & Rosulek, M. (2018). A pragmatic introduction to secure multiparty computation. Foundations and Trends® in Privacy and Security, 2(2–3), 70–246. https://www.nowpublishers.com/article/Details/SEC-019
Evidence-Based Policymaking Commission Act, Pub. L. No. 114-140, 130 Stat. 317 (2016). https://www.govinfo.gov/content/pkg/STATUTE-130/pdf/STATUTE-130-Pg317.pdf
Fahey, B. A. (2021). Data federalism. Harvard Law Review, 135(4), 1007. https://ssrn.com/abstract=4172184
Family Educational Rights and Privacy Act, 20 U.S.C. § 1232g; 34 CFR Part 99 (1974). https://www.ecfr.gov/current/title-34/subtitle-A/part-99?toc=1
Federal Committee on Statistical Methodology. (2005). Statistical policy working paper 22 (second version): Report on statistical disclosure limitation methodology. https://www.hhs.gov/sites/default/files/spwp22.pdf
______. (2022). Data protection toolkit: Report and resources on statistical disclosure limitation methodology and tiered data. https://nces.ed.gov/fcsm/dpt
Ferencz, B., & Buki, B. (2022). Three ways of secure data reusability in Europe: German Research Data Centres, Finnish Findata and the French Secure Access Data Centre. ELTE Law Journal, 2022, 81. https://heinonline.org/HOL/Page?handle=hein.journals/eltelj2022&div=8&g_sent=1&casa_token=&collection=journals
Ferraiolo, H., Chandramouli, R., Ghadiali, N., Mohler, J., & Shorter, S. (2015). NIST SP 800-79-2, Guidelines for the authorization of personal identity verification card issuers (PCI) and derived PIV credential issuers (DPCI). U.S. Department of Commerce, National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-79-2.pdf
Fluitt, A., Cohen, A., Altman, M., Nissim, K., Viljoen, S., & Wood, A. (2019). Opinions: Data protection’s composition problem. European Data Protection Law Review, 5(3). https://doi.org/10.21552/edpl/2019/3/4
Foote, A. D., Machanavajjhala, A., & McKinney, K. (2019). Releasing earnings distributions using differential privacy: Disclosure avoidance system for post-secondary employment outcomes (PSEO). Journal of Privacy and Confidentiality, 9(2). https://journalprivacyconfidentiality.org/index.php/jpc/article/view/722
Foundations for Evidence-Based Policymaking Act of 2018, Pub. L. No. 115-435 132 Stat. 5529 (2019). https://www.govinfo.gov/content/pkg/PLAW-115publ435/html/PLAW115publ435.htm
Freedman, M. J., Nissim, K., & Pinkas, B. (2004). Efficient private matching and set intersection. https://git.gnunet.org/bibliography.git/plain/docs/EffecitvePrivateMatching2004Freedman.pdf
Ganta, S., Ranjit, S., Prasad K., & Adam, S. (2008). Composition attacks and auxiliary information in data privacy. ArXiv. https://arxiv.org/abs/0803.0032
Garfinkel, S. (2015). NIST IR 8053, De-identification of Personal information. U.S. Department of Commerce, National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8053.pdf?uuid=n2tDjSm0DpcTq02f5027
Garfinkel, S., Abowd, J. M., & Martindale, C. (2018). Understanding database reconstruction attacks on public data. Queue, 16(5), 28–53. https://queue.acm.org/detail.cfm?id=3295691
Garfinkel, S., Near, J., Dajani, A., Singer, P., & Guttman, B. (2023). NIST SP 800-188, Deidentifying government datasets: Techniques and governance. U.S. Department of Commerce, National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-188.pdf
General Services Administration. (2020). Federal data strategy: Data ethics framework. https://resources.data.gov/assets/documents/fds-data-ethics-framework.pdf
Gkoulalas-Divanis, A., Vatsalan, D., Karapiperis, D., & Kantarcioglu, M. (2021). Modern privacy-preserving record linkage techniques: An overview. IEEE Transactions on Information Forensics and Security, 16, 4966–4987. https://ieeexplore.ieee.org/abstract/document/9541149
Gymrek, M., McGuire, A. L., Golan, D., Halperin, E., & Erlich, Y. (2013). Identifying personal genomes by surname inference. Science, 339(6117), 321–324. https://www.science.org/doi/full/10.1126/science.1229566
Hall, R., & Fienberg, S. (2010). Privacy-preserving record linkage. In J. Domingo-Ferrer & E. Magkos (Eds.), Lecture notes in computer science (Vol. 6344, pp. 269–283). Springer. https://doi.org/10.1007/978-3-642-15838-4_24
Hanisch, R. J., Kaiser, D. L., Carroll, B. C., Higgins, C., Killgore, J., Poster, D., & Merritt, M. (2021). NIST SP 1500-18r.1, Research data framework (RDaF): Motivation, development, and a preliminary framework core. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-18r1.pdf
Hawes, M. (2023, May 25). Communicating privacy to the public. Presentation at the workshop on approaches to sharing blended data in a 21st century data infrastructure [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/DB95E2A4E27EDBA224DCB206DA769805BA029DDB738F?noSaveAs=1
Herzog, T. N., Scheuren, F. J., & Winkler, W. E. (2007). Data quality and record linkage techniques (Vol. 1). Springer. https://link.springer.com/book/10.1007/0-387-69505-2
Hollowell, A. (2022). How the U.S. Census Bureau’s work to improve data privacy can be a lesson for enterprises. Venture Beat. https://venturebeat.com/data-infrastructure/how-us-census-bureaus-work-to-improve-data-privacy-is-a-lesson-for-enterprises/
Hotz, V. J., Bollinger, C. R., Komarova, T., Manski, C. F., Moffitt, R. A., Nekipelov, D., Sojourner, A., & Spencer, B. D. (2022). Balancing data privacy and usability in the federal statistical system. Proceedings of the National Academy of Sciences, 119(31), e2104906119. https://doi.org/10.1073/pnas.2104906119
Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E. S., Spicer, K., & de Wolf, P.-P. (2012). Statistical disclosure control. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118348239
Hunter Childs, J., Eggleston, C., & Clark Fobia, A. (2020). Measuring privacy and accuracy concerns for 2020 Census data dissemination. U.S. Census Bureau. https://www.bigsurv.org/bigsurv20/uploads/25/82/Childs_BigSurv20_Paper_10.15.2020.pdf
Inter-University Consortium for Political and Social Research. (2023). IAB Establishment Panel, 1993–2020. https://www.icpsr.umich.edu/web/ICPSR/studies/37161/datadocumentation
Internal Revenue Code of 1986, Pub. L. No. 99-514, § 2, 100 Stat. 2095 § 6103 (1986). https://www.govinfo.gov/content/pkg/USCODE-2011-title26/pdf/USCODE-2011-title26-subtitleF-chap61-subchapB-sec6103.pdf
International Organization for Standardization. (2022). ISO/IEC JTC 1/SC 27, Information security, cybersecurity and privacy protection – Privacy enhancing data de-identification framework (Vol. 11). https://www.iso.org/obp/ui/en/#iso:std:iso-iec:27559:ed-1:v1:en
ITSM Docs. (2021). ITIL vs COBIT – Differences between two IT governance framework[s]. https://www.itsm-docs.com/blogs/itil-concepts/itil-vs-cobit-differences-between-two-it-governance-framework
Janmey, V., & Elkin, P. L. (2018). Re-identification risk in HIPAA de-identified datasets: The MVA attack. AMIA Annual Symposium Proceedings, 1329–1337. https://pubmed.ncbi.nlm.nih.gov/30815177/
Jarmin, R. S., Abowd, J. M., Ashmead, R., Cumings-Menon, R., Goldschlag, N., Hawes, M. B., Keller, S. A., Kifer, D., Leclerc, P., Reiter, J. P., Rodríguez, R. A., Schmutte, I., Velkoff, V. A., & Zhuravlev, P. (2023). An in-depth examination of requirements for disclosure risk assessment. Proceedings of the National Academy of Sciences, 120(43), e2220558120. https://doi.org/10.1073/pnas.2220558120
Johnson, C., Badger, L., Waltermire, D., Snyder, J., & Skorupka, C. (2016). NIST SP 800-150, Guide to cyber threat information sharing. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-150.pdf
Juran, J. (1988). Juran on planning for quality. The Free Press. https://openlibrary.org/books/OL2391808M/Juran_on_planning_for_quality
Kamm, P., & Laud, L. (2015). Applications of secure multiparty computation. IOS Press. https://dl.acm.org/doi/book/10.5555/2836836
Karr, A. F., Kohnen, C. N., Oganian, A., Reiter, J. P., & Sanil, A. P. (2006). A framework for evaluating the utility of data altered to protect confidentiality. The American Statistician, 60(3), 224–232. https://www.tandfonline.com/doi/abs/10.1198/000313006X124640
Karr, A. F., & Reiter, J. (2014). Using statistics to protect privacy. In J. Lane, V. Stodden, S. Bender, & H. Nissenbaum (Eds.), Privacy, big data, and the public good: Frameworks for engagement (Vol. 1, pp. 276–295). Cambridge University Press. https://doi.org/10.1017/CBO9781107590205.017
Kearns, E. (2023). Data-driven climate risk assessments for financial regulation [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D526C0D4627CDFAE9E313766A6C0C2160395EFFAB1A5?noSaveAs=1
Keller, S. A., Shipp, S., & Schroeder, A. (2016). Does big data change the privacy landscape? A review of the issues. Annual Review of Statistics and Its Application, 3, 161–180. https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-041715-033453
Kelty, C. M. (2020). The participant: A century of participation in four stories. University of Chicago Press. https://doi.org/10.7208/chicago/9780226666938.002.0006
Kenny, C. T., Kuriwaki, S., McCartan, C., Simko, T., & Imai, K. (2023). Evaluating bias and noise induced by the U.S. Census Bureau’s privacy protection methods. ArXiv. https://arxiv.org/abs/2306.07521
Kenthapadi, K., Mishra, N., & Nissim, K. (2013). Denials leak information: Simulatable auditing. Journal of Computer and System Sciences, 79(8), 1322–1340. https://www.sciencedirect.com/science/article/pii/S002200001300113X
Kentucky Center for Statistics. (2023a). Multi-state postsecondary report: Tableau. https://kystats.ky.gov/Reports/Tableau/2023_MSPSR
______. (2023b). Multi-state postsecondary report: Technical notes. https://kystats.ky.gov/Content/Reports/2023_MSPSR_Technical_Notes.pdf
Kifer, D., & Lin, B.-R. (2012). An axiomatic view of statistical privacy and utility. Journal of Privacy and Confidentiality, 4(1). https://journalprivacyconfidentiality.org/index.php/jpc/article/view/610
Kinney, S. K., Reiter, J. P., Reznek, A. P., Miranda, J., Jarmin, R. S., & Abowd, J. M. (2011). Towards unrestricted public use business microdata: The synthetic longitudinal business database. International Statistical Review, 79(3), 362–384. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1751-5823.2011.00153.x
Kumar, R., Novak, J., Pang, B., & Tomkins, A. (2007). On anonymizing query logs via token-based hashing. Proceedings of the 16th International Conference on World Wide Web, 629–638. https://doi.org/10.1145/1242572.1242657
Ladd, J. (1989). Computers and moral responsibility: A framework for ethical analysis. In C. C. Gould (Ed.), The information web: Ethical and social implications of computer networking (pp. 207–227). Westview Press. https://philpapers.org/rec/LADCAM
Lambert, D. (1993). Measures of disclosure risk and harm. Journal of Official Statistics, 9, 313–331. https://www.researchgate.net/publication/2337915_Measures_of_Disclosure_Risks_and_Harm
Lane, J., Gimeno, E., Levitskaya, E., Zhang, Z., & Zigoni, A. (2022). Data inventories for the modern age? Using data science to open government data. Harvard Data Science Review, 4. https://hdsr.mitpress.mit.edu/pub/g6e8noiy/release/2
Lane, J., Mulvany, I., & Nathan, P. (2023). Rich search and discovery for research datasets. Sage. https://study.sagepub.com/richcontext/student-resources/e-book-files/web-pdf
Lane, J., & Schur, C. (2010). Balancing access to health data and privacy: A review of the issues and approaches for the future. Health Services Research, 45(5p2), 1456–1467. https://onlinelibrary.wiley.com/doi/10.1111/j.1475-6773.2010.01141.x
Li, L., & Reiter, J. P. (2022). Bayesian inference for estimating subset proportions using differentially private counts. Journal of Survey Statistics and Methodology, 10(3), 785–803. https://academic.oup.com/jssam/article-abstract/10/3/785/6532394
Li, Y., Coull, B. A., Krieger, N., Peterson, E., Waller, L. A., Chen, J. T., & Nethery, R. C. (2023). Impacts of census differential privacy for small-area disease mapping to monitor health inequities. Science Advances, 9(33), 8888. https://pubmed.ncbi.nlm.nih.gov/37595037/
Little, R. J. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88(421), 125–134. https://www.jstor.org/stable/2290705
Long, G. (2020). Formal privacy methods for the 2020 Census (JSR-19-2F). JASON. https://www2.census.gov/programs-surveys/decennial/2020/program-management/planning-docs/privacy-methods-2020-census.pdf
Machanavajjhala, A., & Kifer, D. (2015). Designing statistical privacy for your data. Communications of the ACM, 58(3), 58–67. https://dl.acm.org/doi/abs/10.1145/2660766
Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). L-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1), 3–es. https://doi.org/10.1145/1217299.1217302
Maimone, C., Yockel, S., Middelkoop, T., Stauffer, A., & Reidy, C. (2022). Characterizing the US research computing and data (RCD) workforce. Practice and Experience in Advanced Research Computing, 1–7. https://doi.org/10.1145/3491418.3530289
Martone, M. (Ed.). (2014). Data citation synthesis group: Joint declaration of data citation principles. FORCE11. https://doi.org/10.25490/a97f-egyk
McClure, D. R., & Reiter, J. P. (2012). Towards providing automated feedback on the quality of inferences from synthetic datasets. Journal of Privacy and Confidentiality, 4(1). https://journalprivacyconfidentiality.org/index.php/jpc/article/view/616
McSherry, F. D. (2009). Privacy integrated queries: An extensible platform for privacy-preserving data analysis. Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, 19–30. https://dl.acm.org/doi/abs/10.1145/1559845.1559850
Michler, J. D., Josephson, A., Kilic, T., & Murray, S. (2022). Privacy protection, measurement error, and the integration of remote sensing and socioeconomic survey data. Journal of Development Economics, 158, 102927. https://doi.org/10.1016/j.jdeveco.2022.102927
Mirel, L., Resnick, D., Aram, J., & Cox, C. (2022). A methodological assessment of privacy preserving record linkage using survey and administrative data. Statistical Journal of the IAOS, 38, 1–9. https://doi.org/10.3233/SJI-210891
Mirel, L. B. (2023, May 22). Current approaches to privacy protection with blended data: Health [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D26872F93BFA98373C71FE7310373C0095F3BB34BF9A?noSaveAs=1
Mironov, I. (2017). Rényi differential privacy. IEEE 30th Computer Security Foundations Symposium (CSF), 263–275. https://ieeexplore.ieee.org/document/8049725
Mueller-Smith, M. (2023, May 25). Criminal justice administrative records system [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D9BFC4328A6EC748C86D7ECB34FF4B586E7BB41C4515?noSaveAs=1
Nabar, S. U., Kenthapadi, K., Mishra, N., & Motwani, R. (2008). A survey of query auditing techniques for data privacy. Privacy-preserving data mining: Models and algorithms, 415–431. https://link.springer.com/chapter/10.1007/978-0-387-70992-5_17
Narayanan, A., & Shmatikov, V. (2006). How to break anonymity of the Netflix prize dataset. ArXiv. https://doi.org/10.48550/arXiv.cs/0610105
National Academies of Sciences, Engineering, and Medicine (National Academies). (2016). Modernizing crime statistics: Report 1: Defining and classifying crime. The National Academies Press. http://doi.org/10.17226/23492
______. ((2017a). Innovations in federal statistics: Combining data sources while protecting privacy. The National Academies Press. https://doi.org/10.17226/24652
______. (2017b). Improving crop estimates by integrating multiple data sources. The National Academies Press. https://doi.org/10.17226/24892
______. (2017c). Federal statistics, multiple data sources, and privacy protection: Next steps. The National Academies Press. https://doi.org/10.17226/24893
______. (2018). Modernizing crime statistics: Report 2: New systems for measuring crime. The National Acadmies Press. https://doi.org/10.17226/25035
______. (2020). Reflections on sharing clinical trial data: Challenges and a way forward: Proceedings of a workshop. The National Academies Press. https://doi.org/10.17226/25838
______. (2021a). Principles and practices for a federal statistical agency (Seventh ed.). The National Academies Press. http://doi.org/10.17226/25885
______. (2021b). A satellite account to measure the retail transformation: Organizational, conceptual, and data foundations. The National Academies Press. https://doi.org/10.17226/26101
______. (2022a). A Vision and roadmap for education statistics. The National Academies Press. https://doi.org/10.17226/26392
______. (2022b). Transparency in statistical information for the National Center for Science and Engineering Statistics and all federal statistical agencies. The National Academies Press. https://doi.org/10.17226/26360
______. (2022c). Modernizing the consumer price index for the 21st century. The National Academies Press. https://doi.org/10.17226/26485
______. (2023a). Toward a 21st century national data infrastructure: Enhancing survey programs by using multiple data sources. The National Academies Press. https://doi.org/10.17226/26804
______. (2023b). A roadmap for disclosure avoidance in the Survey of Income and Program Participation. The National Academies Press. https://doi.org/10.17226/27169
______. (2023c). Toward a 21st century national data infrastructure: Mobilizing information for the public good. The National Academies Press. https://doi.org/10.17226/26688
______. (2023d). 2020 Census data products: Demographic and housing characteristics file: Proceedings of a workshop. The National Academies Press. https://doi.org/10.17226/26727
National Agricultural Statistics Service. (2023). The 5 ‘W’s of NASS data usage. U.S. Department of Agriculture. https://public.tableau.com/app/profile/national.agricultural.statistics.service/viz/5WsofNASSDataUsage/The5Ws
National Center for Science and Engineering Statistics. (2023). The National Secure Data Service demonstration project. National Science Foundation. https://ncses.nsf.gov/about/national-secure-data-service-demo#card1850
National Opinion Research Center. (2023). Data enclave. https://www.norc.org/services-solutions/data-enclave.html
National Research Council. (1993). Private lives and public policies: Confidentiality and accessibility of government statistics. The National Academies Press. https://doi.org/10.17226/2122
______. (2005). Expanding access to research data: Reconciling risks and opportunities. The National Academies Press. https://doi.org/10.17226/11434
______. (2014). Proposed revisions to the common rule for the protection of human subjects in the behavioral and social sciences. The National Academies Press. https://doi.org/10.17226/18614
Neely, M. P. (2005). The product approach to data quality and fitness for use: A framework for analysis. In Proceedings of the Tenth International Conference on Information Quality. https://repository.rit.edu/cgi/viewcontent.cgi?article=1558&context=other
Nissenbaum, H. (2010). Privacy in context: Technology, policy, and the integrity of social life. Stanford University Press. https://books.google.com/books?hl=en&lr=&id=_NN1uGn1Jd8C&oi=fnd&pg=PR7&ots=_N1l_pf0xQ&sig=rfBzV6BJ5jdAguvxEGniJ8yjKGI#v=onepage&q&f=false
Nissim, K. (2023, May 25). Towards designing technical solutions for privacy laws [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/DD6B23F96441DD018C4C5BC6FC574FA8D6B01572BFA5?noSaveAs=1
Nissim, K., Bembenek, A., Wood, A., Bun, M., Gaboardi, M., Gasser, U., O‘Brien, D. R., Steinke, T., & Vadhan, S. (2017). Bridging the gap between computer science and legal approaches to privacy. Harvard Journal of Law and Technology, 31, 687. https://heinonline.org/HOL/Page?handle=hein.journals/hjlt31&div=27&g_sent=1&casa_token=
Office of Management and Budget. (2002). Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information disseminated by federal agencies; republication, 67 F.R. 8452 (February 5, 2002). https://www.federalregister.gov/documents/2002/02/22/R2-59/guidelines-for-ensuring-and-maximizing-the-quality-objectivity-utility-and-integrity-of-information
______. (2003). M-03-22, OMB guidance for implementing the privacy provisions of the E-Government Act of 2002. https://www.whitehouse.gov/wp-content/uploads/legacy_drupal_files/omb/memoranda/2003/m03_22.pdf
______. (2007). Implementation guidance for Title V of the E-Government Act, Confidential Information Protection and Statistical Efficiency Act of 2002 (CIPSEA). 72 F.R. 33362 (June 15, 2007). https://www.federalregister.gov/documents/2007/06/15/E7-11542/implementation-guidance-for-title-v-of-the-e-government-act-confidential-information-protection-and
______. (2013). M-13-13, Open data policy—Managing information as an asset. https://www.whitehouse.gov/wp-content/uploads/legacy_drupal_files/omb/memoranda/2013/m-13-13.pdf
______. (2014). Statistical policy directive 1: Fundamental responsibilities of federal statistical agencies and recognized statistical units. 79 F.R. 71609 (December 2, 2014). https://www.federalregister.gov/documents/2014/12/02/2014-28326/statistical-policy-directive-no-1-fundamental-responsibilities-of-federal-statistical-agencies-and
______. (2016). Circular A-130, Managing information as a strategic resource. https://www.whitehouse.gov/wp-content/uploads/legacy_drupal_files/omb/circulars/A130/a130revised.pdf
______. (2019). M-19-18, Federal data strategy—A framework for consistency. https://www.whitehouse.gov/wp-content/uploads/2019/06/M-19-18.pdf
______. (2022). M-23-04, Establishment of standard application process requirements on recognized statistical agencies and units. https://www.whitehouse.gov/wp-content/uploads/2022/12/M-23-04.pdf
______. (2023). Notice of proposed rulemaking on the fundamental responsibilities of recognized statistical agencies and units. 88 F.R. 56708 (August 18, 2023). https://www.federalregister.gov/documents/2023/08/18/2023-17664/fundamental-responsibilities-of-recognized-statistical-agencies-and-units
Ohm, P. (2009). Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA Law Review, 57, 1701. https://heinonline.org/HOL/Page?handle=hein.journals/uclalr57&div=48&g_sent=1&casa_token=&collection=journals
Paperwork Reduction Act, Pub. L. No. 104-13, 109 Stat. 163 (1995). https://www.govinfo.gov/content/pkg/PLAW-104publ13/html/PLAW-104publ13.htm
Penner, A. M. (2023, May 23). Partnership research in education with blended data [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D9C68D9459E58A00BA768FE6235D89C529E2B2078A9C?noSaveAs=1
Potok, N. (2023). Continuing implementation of the Foundations for Evidence-Based Policymaking Act of 2018: Who is using the data? Harvard Data Science Review, 5. https://doi.org/10.1162/99608f92.c0219d0e
Privacy Act of 1974, Pub. L. No. 93-579, Stat. 88 (1974). https://www.govinfo.gov/content/pkg/STATUTE-88/pdf/STATUTE-88-Pg1896.pdf
Privacy Technical Assistance Center. (2014). FERPA exceptions—Summary. U.S. Department of Education. https://studentprivacy.ed.gov/sites/default/files/resource_document/file/FERPA%20Exceptions_HANDOUT_horizontal_0_0.pdf
Qin, L., Lapets, A., Jansen, F., Flockhart, P., Albab, K. D., Globus-Harris, I., Roberts, S., & Varia, M. (2019). From usability to secure computing and back again. Fifteenth Symposium on Usable Privacy and Security.
Raghuraman, S., & Rindal, P. (2022). Blazing fast PSI from improved OKVS and subfield VOLE. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2505–2517. https://eprint.iacr.org/2022/320.pdf
Reiter, J. P. (2003). Inference for partially synthetic, public use microdata sets. Survey Methodology, 29(2), 181–188. https://www150.statcan.gc.ca/n1/pub/12-001-x/2003002/article/6785-eng.pdf
______. (2005a). Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association, 1103–1112. https://www.jstor.org/stable/27590657
______. (2005b). Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society Series A: Statistics in Society, 168(1), 185–205. https://academic.oup.com/jrsssa/article/168/1/185/7084130
______. (2012). Statistical approaches to protecting confidentiality for microdata and their effects on the quality of statistical inferences. Public Opinion Quarterly, 76(1), 163–181. https://doi.org/10.1093/poq/nfr058
______. (2019). Differential privacy and federal data releases. Annual Review of Statistics and Its Application, 6, 85–101. https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-030718-105142
Reiter, J. P., Oganian, A., & Karr, A. F. (2009). Verification servers: Enabling analysts to assess the quality of inferences from public use data. Computational Statistics & Data Analysis, 53(4), 1475–1482. https://www.sciencedirect.com/science/article/abs/pii/S0167947308004751
Reiter, J. P., Wang, Q., & Zhang, B. (2014). Bayesian estimation of disclosure risks for multiply imputed, synthetic data. Journal of Privacy and Confidentiality, 6(1). https://journalpri-vacyconfidentiality.org/index.php/jpc/article/view/635
Ritchie, F., & Green, E. (2020). Frameworks, principles and accreditation in modern data management. https://uwe-repository.worktribe.com/index.php/OutputFile/6790881
Rubin, D. B. (1993). Statistical disclosure limitation. Journal of Official Statistics, 9(2), 461–468. https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/discussion-statistical-disclosure-limitation2.pdf
Samarati, P., & Sweeney, L. (1998). Protecting privacy when disclosing information: K-anonymity and its enforcement through generalization and suppression. In Proceedings of the IEEE Symposium on Research in Security and Privacy. https://dataprivacylab.org/dataprivacy/projects/kanonymity/index3.html
Schafer, J. L., & Bell, W. (2021, April 19). Block-level simulation of non-sampling variability in decennial census population counts (Working Paper No. CED-WP-2021-007). U.S. Census Bureau. https://www.census.gov/library/working-papers/2021/adrm/CED-WP-2021-007.html
Schmitz, P. (2021). Advancing the workforce that supports computationally and data intensive research. Computing in Science and Engineering. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9492830
Shlomo, N. (2019). Statistical disclosure limitation and differential privacy. Washington Statistical Society President’s Invited Seminar. https://washstat.org/presentations/20190501/Shlomo.pdf
Singer, E., Hippler, H.-J., & Schwarz, N. (1992). Confidentiality assurances in surveys: Reassurance or threat? International Journal of Public Opinion Research, 4(3), 256–268. https://academic.oup.com/ijpor/article-abstract/4/3/256/703318
Skinner, C., O’Keefe, C. M., Reiter, J. P., & Willenborg, L. (2012). Statistical disclosure risk: Separating potential and harm [with discussion and rejoinder]. International Statistical Review / Revue Internationale de Statistique, 80(3), 349–381. http://www.jstor.org/stable/41819853
Skinner, C., & Shlomo, N. (2008). Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association, 103(483), 989–1001. https://www.tandfonline.com/doi/abs/10.1198/016214507000001328
Slavković, A., & Seeman, J. (2023). Statistical data privacy: A song of privacy and utility. Annual Review of Statistics and Its Application, 10, 189–218. https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-033121-112921
State of Alabama, et al., v. United States Department of Commerce, et al. 546 F Supp 3d 1057 (M.D. Alabama Eastern Division 2021). Declaration of John M. Abowd. https://censusproject.files.wordpress.com/2021/04/2021.04.13-abowd-declaration-alabama-v.-commerce-ii-final-signed.pdf
Statistics of Income. (2023). SOI Tax Stats - Joint Statistical Research Program. U.S. Internal Revenue Service. https://www.irs.gov/statistics/soi-tax-stats-joint-statistical-research-program
Steed, R., Liu, T., Wu, Z. S., & Acquisti, A. (2022). Policy impacts of statistical uncertainty and privacy. Science, 377(6609), 928–931. https://www.science.org/doi/full/10.1126/science.abq4481
Student Privacy Policy Office. (2021). A parent guide to the Family Educational Rights and Privacy Act (FERPA) (SPPO-21-04). U.S. Department of Education. https://studentprivacy.ed.gov/sites/default/files/resource_document/file/A%20parent%20guide%20to%20ferpa_508.pdf
Student Right to Know Before You Go Act, S. 3952, 117th Congress. (2022). https://www.congress.gov/bill/117th-congress/senate-bill/3952?s=1&r=71
Sweeney, L. (1997). Guaranteeing anonymity when sharing medical data, the datafly system. Proceedings of the AMIA Annual Fall Symposium, 51. American Medical Informatics Association. https://pubmed.ncbi.nlm.nih.gov/9357587/
______. (2000). Simple demographics often identify people uniquely. Carnegie Mellon University Data Privacy Working Paper 3. https://privacytools.seas.harvard.edu/sites/projects.iq.harvard.edu/files/privacytools/files/paper1.pdf
Sweeney, L., Abu, A., & Winn, J. (2013). Identifying participants in the Personal Genome Project by name (a re-identification experiment). ArXiv. https://arxiv.org/abs/1304.7605
Sweeney, L., Crosas, M., & Bar-Sinai, M. (2015). Sharing sensitive data with confidence: The datatags system. https://techscience.org/a/2015101601/
Sweeney, L., Yoo, J. S., Perovich, L., Boronow, K. E., Brown, P., & Brody, J. G. (2017). Re-identification in HIPAA safe harbor data: A study of data from one environmental health study. Technology Science, 2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344041/
Taylor, S., MacDonald, G., Ueyama, K., & Bowen, C. M. (2021). A privacy-preserving validation server prototype. Urban Institute Working Paper. www.urban.org/sites/default/files/publication/104869/a-privacy-preserving-validation-server-prototype.pdf
Teufel III, H. (2008). Privacy policy guidance memorandum. U.S. Department of Homeland Security. https://www.dhs.gov/sites/default/files/publications/privacy-policy-guidance-memorandum-2008-01.pdf
The Data Foundation and the Center for Open Data Enterprise. (2023). Stakeholder Engagement Toolkit. The Data Foundation. https://static1.squarespace.com/static/56534df0e4b0c2babdb6644d/t/6450103d41823179945debde/1682968638421/rwjf-toolkit_4%3A27.pdf
Title 13—Census, 1158 68 Stat. 1012 (1954). https://www.govinfo.gov/content/pkg/USCODE-2007-title13/pdf/USCODE-2007-title13.pdf
Towns, J. (2023, May 23). Workforce needs in the age of blended data [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D646C6168F733F3CCAC0B2028E91AD1142FC0BC9DE0A?noSaveAs=1
Triplett, T. (2023, May 22). Sharing refugee survey data and privacy concerns with providing state level resettlement information or other information collected during enrollment [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D8F249D7E13978371CB1539A32436FF77B5CBCA97978?noSaveAs=1
U.S. Census Bureau. (2003). Census confidentiality and privacy: 1790 - 2002. U.S. Department of Commerce. https://www.census.gov/library/publications/2003/comm/monograph-confidentiality-privacy.html
______. (2021a). Census Bureau sets key parameters to protect privacy in 2020 Census results. (Press Release Number B21-CN.42). U.S. Department of Commerce. https://www.census.gov/newsroom/press-releases/2021/2020-census-key-parameters.html
______. (2021b). Federal Statistical Research Data Center disclosure avoidance methods: A handbook for researchers (Version 2.1.0). U.S. Department of Commerce. https://www.census.gov/content/dam/Census/programs-surveys/sipp/methodology/FSRDC-Disclosure-Avoidance-Methods-Handbook.pdf
______. (2022a). About data linkage infrastructure. https://www.census.gov/about/adrm/link-age/about.html
______. (2022b). U.S. Census Bureau Post-Enumeration Survey. U.S. Department of Commerce. https://www.census.gov/programs-surveys/decennial-census/about/coverage-mea-surement/pes.html
______. (2022c). Revised data metrics for 2020 disclosure avoidance. U.S. Department of Commerce. https://www2.census.gov/programs-surveys/decennial/2020/program-management/data-product-planning/2010-demonstration-data-products/02-Demographic_and_Housing_Characteristics/2022-03-16_Summary_File/2022-03-16_Detailed_Summary_Metrics_Overview.pdf
______. (2023). Federal Statistical Research Data Centers. U.S. Department of Commerce. https://www.census.gov/about/adrm/fsrdc.html
U.S. Department of Education. (2023). College Scorecard. https://collegescorecard.ed.gov/
U.S. Equal Employment Opportunity Commission. (2023). EEO data collections. https://www.eeoc.gov/data/eeo-data-collections
Varia, M. (2023). Challenges to privacy and confidentiality across the blended data lifecycle [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/D1FF6E17F9468FE48ACE5B586363DEB8D4B6A8BF5689?noSaveAs=1
Wagner, D., & Lane, M. (2014). The Person Identification Validation System (PVS): Applying the Center for Administrative Records Research and Applications’ (CARRA) record linkage software. CARRA Working Papers, Center for Economic Studies, U.S. Census Bureau. https://ideas.repec.org/p/cen/cpaper/2014-01.html
Walker, A., Patel, S., & Yung, M. (2019). Helping organizations do more without collecting more data. Google Security Blog. https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
Waters, J. (2023). Unique privacy considerations in blending disaster data [Conference session]. Approaches to Sharing Blended Data in a 21st Century Data Infrastructure. National Academies of Sciences, Engineering, and Medicine and National Science Foundation. https://www.nationalacademies.org/documents/embed/link/LF2255DA3DD1C41C0A42D3BEF0989ACAECE3053A6A9B/file/DCE6EBC95F7503416E97DF148F56C5E181991E011D84?noSaveAs=1
Weise, M., Kovacevic, F., Popper, N., & Rauber, A. (2022). OSSDIP: Open source secure data infrastructure and processes supporting data visiting. Data Science Journal, 21, 4. https://account.datascience.codata.org/index.php/up-j-dsj/article/view/dsj-2022-004
Willenborg, L., & de Waal, T. (2001). Elements of statistical disclosure control (Vol. 155). Springer Science & Business Media. https://mitpressbookstore.mit.edu/book/9780387951218
Wong, R. C., Fu, A. W., Wang, K., & Pei, J. (2007). Minimality attack in privacy preserving data publishing. Proceedings of the 33rd International Conference on Very Large Data Bases, 543–554. https://www.cse.ust.hk/~raywong/paper/vldb07-cred.pdf
Wong, R. Y., Chong, A., & Aspegren, R. C. (2023). Privacy legislation as business risks: How GDPR and CCPA are represented in technology companies’ investment risk disclosures. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1), 1–26. https://dl.acm.org/doi/abs/10.1145/3579515
Wu, T. (2013). Defining privacy and utility in data sets. University of Colorado Law Review, 84, 1117. https://dx.doi.org/10.2139/ssrn.2031808
Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C.-Z., Li, H., & Tan, Y.-A. (2019). Secure multi-party computation: Theory, practice and applications. Information Sciences, 476, 357–372.
This page intentionally left blank.